

Welcome to benford_py’s documentation!

Contents:

	benford
	benford package
	benford.benford module

	benford.expected module

	benford.stats module

	benford.viz module

Indices and tables

	Index

	Module Index

	Search Page

On GitHub

Package [https://github.com/milcent/benford_py]

Demo Jupyter Notebook [https://github.com/milcent/benford_py/blob/master/Demo.ipynb]

benford

	benford package
	benford.benford module

	benford.expected module

	benford.stats module

	benford.viz module

benford package

benford.benford module

	
class benford.benford.Base(data, decimals, sign='all', sec_order=False)[source]

	Bases: pandas.core.frame.DataFrame

Internalizes and prepares the data for Analysis.

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. pos: only the positive
entries; neg: only negative entries; all: all entries but zeros.
Defaults to all.`

	Raises

	TypeError – if not receiving int or float as input.

	
class benford.benford.Test(base, digs, confidence, limit_N=None, sec_order=False)[source]

	Bases: pandas.core.frame.DataFrame

Transforms the original number sequence into a DataFrame reduced
by the ocurrences of the chosen digits, creating other computed
columns

	Parameters

	
	base – The Base object with the data prepared for Analysis

	digs – Tells which test to perform: 1: first digit; 2: first two digits;
3: furst three digits; 22: second digit; -2: last two digits.

	confidence (int, float) – confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show.

	limit_N (int) – sets a limit to N as the sample size for the calculation of
the Z scores if the sample is too big. Defaults to None.

	
N

	Number of records in the sample to consider in computations

	
ddf

	Degrees of Freedom to look up for the critical chi-square value

	
chi_square

	Chi-square statistic for the given test

	
KS

	Kolmogorov-Smirnov statistic for the given test

	
MAD

	Mean Absolute Deviation for the given test

	
confidence

	Confidence level to consider when setting some critical values

	
digs

	numerical representation of the test at hand. 1: F1D; 2: F2D;
3: F3D; 22: SD; -2: L2D.

	Type

	int

	
sec_order

	True if the test is a Second Order one

	Type

	bool

	
update_confidence(new_conf, check=True)[source]

	Sets a new confidence level for the Benford object, so as to be used to
produce critical values for the tests

	Parameters

	
	new_conf – new confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show, as well as to
calculate critical values for the tests’ statistics.

	check – checks the value provided for the confidence. Defaults to True

	
critical_values

	a dictionary with the critical values for the test at hand,
according to the current confidence level.

	Type

	dict

	
show_plot(save_plot=None, save_plot_kwargs=None)[source]

	Draws the test plot.

	Parameters

	
	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when save_plot is a string with the figure file
path/name.

	
report(high_Z='pos', show_plot=True, save_plot=None, save_plot_kwargs=None)[source]

	Handles the report especific to the test, considering its statistics
and according to the current confidence level.

	Parameters

	
	high_Z (int) – chooses which Z scores to be used when displaying results,
according to the confidence level chosen. Defaluts to ‘pos’,
which will highlight only values higher than the expexted
frequencies; ‘all’ will highlight both extremes (positive and
negative); and an integer, which will use the first n entries,
positive and negative, regardless of whether Z is higher than
the critical value or not.

	show_plot – calls the show_plot method, to draw the test plot

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	
class benford.benford.Summ(base, test)[source]

	Bases: pandas.core.frame.DataFrame

Gets the base object and outputs a Summation test object

	Parameters

	
	base – The Base object with the data prepared for Analysis

	test – The test for which to compute the summation

	
MAD = None

	Mean Absolute Deviation for the test

	
confidence = None

	Confidence level to consider when setting some critical values

	
show_plot(save_plot=None, save_plot_kwargs=None)[source]

	Draws the Summation test plot

	Parameters

	
	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when save_plot is a string with the figure file
path/name.

	
report(high_diff=None, show_plot=True, save_plot=None, save_plot_kwargs=None)[source]

	Gives the report on the Summation test.

	Parameters

	
	high_diff – Number of records to show after ordering by the absolute
differences between the found and the expected proportions

	show_plot – calls the show_plot method, to draw the Summation test plot

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	
class benford.benford.Mantissas(data, confidence=95, limit_N=None)[source]

	Bases: object

Computes and holds the mantissas of the logarithms of the records

	Parameters

	
	data – sequence to compute mantissas from. numpy 1D array, pandas
Series of pandas DataFrame column.

	confidence – confidence level for computing the critical values to
compare with some statistics

	
data = None

	pandas DataFrame with the mantissas

	Type

	(DataFrame)

	
stats

	

	
update_confidence(new_conf, check=True)[source]

	Sets a new confidence level for the Benford object, so as to be used to
produce critical values for the tests

	Parameters

	
	new_conf – new confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show, as well as to
calculate critical values for the tests’ statistics.

	check – checks the value provided for the confidence. Defaults to True

	
report(show_plot=True, save_plot=None, save_plot_kwargs=None)[source]

	Displays the Mantissas test stats.

	Parameters

	
	show_plot – shows the Ordered Mantissas plot and the Arc Test plot.
Defaults to True.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	
show_plot(figsize=(12, 6), save_plot=None, save_plot_kwargs=None)[source]

	Plots the ordered mantissas and a line with the expected
inclination.

	Parameters

	
	figsize (tuple) – figure size dimensions

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when save_plot is a string with the figure file
path/name.

	
arc_test(grid=True, figsize=12, save_plot=None, save_plot_kwargs=None)[source]

	Adds two columns to Mantissas’s DataFrame equal to their “X” and “Y”
coordinates, plots its to a scatter plot and calculates the gravity
center of the circle.

	Parameters

	
	grid – show grid of the plot. Defaluts to True.

	figsize (int) – size of the figure to be displayed. Since it is a square,
there is no need to provide a tuple, like is usually the case with
matplotlib.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	
class benford.benford.Benford(data, decimals=2, sign='all', confidence=95, mantissas=True, sec_order=False, summation=False, limit_N=None, verbose=True)[source]

	Bases: object

Initializes a Benford Analysis object and computes the proportions for
the digits. The tets dataFrames are atributes, i.e., obj.F1D is the First
Digit DataFrame, the obj.F2D,the First Two Digits one, and so one, F3D for
First Three Digits, SD for Second Digit and L2D for Last Two Digits.

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a tuple with a pandas DataFrame and the name (str)
of the chosen column. Values must be integers or floats.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. pos: only the positive
entries; neg: only negative entries; all: all entries but zeros.
Defaults to all.

	confidence (int, float) – confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show, as well as to
calculate critical values for the tests’ statistics. Defaults to 95.

	mantissas (bool) – opts for also running the mantissas Test. Defaulst to
True

	sec_order – runs the Second Order tests, which are the Benford’s tests
performed on the differences between the ordered sample (a value minus
the one before it, and so on). If the original series is Benford-
compliant, this new sequence should aldo follow Beford. The Second
Order can also be called separately, through the method sec_order().

	summation – creates the Summation DataFrames for the First, First Two, and
First Three Digits. The summation tests can also be called separately,
through the method summation().

	limit_N (int) – sets a limit to N as the sample size for the calculation of
the Z scores if the sample is too big. Defaults to None.

	verbose – gives some information about the data and the registries used
and discarded for each test.

	
data

	the raw data provided for the analysis

	
chosen

	the column of the DataFrame to be analysed or the data itself

	
sign

	which number sign(s) to include in the analysis

	Type

	str

	
confidence

	current confidence level

	
limit_N

	sample size to use in computations

	Type

	int

	
verbose

	verbose or not

	Type

	bool

	
base

	the Base, pre-processed object

	
tests

	keeps track of the tests the
instance has

	Type

	list of str

	
update_confidence(new_conf, tests=None)[source]

	Sets (a) new confidence level(s) for the Benford object, so as to be
used to produce critical values for the tests.

	Parameters

	
	new_conf – new confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show, as well as to
calculate critical values for the tests’ statistics.

	tests (list of str) – list of tests names (strings) to
have their confidence updated. If only one, provide a one-element
list, like [‘F1D’]. Defauts to None, in which case it will use
the instance .test list attribute.

	Raises

	ValueError – if the test argument is not a list or None.

	
all_confidences

	a dictionary with a confidence level for each computed tests,
when applicable.

	Type

	dict

	
mantissas()[source]

	Adds a Mantissas object to the tests, with all its statistics and
plotting capabilities.

	
sec_order()[source]

	Runs the Second Order tests, which are the Benford’s tests
performed on the differences between the ordered sample (a value minus
the one before it, and so on). If the original series is Benford-
compliant, this new sequence should aldo follow Beford. The Second
Order can also be called separately, through the method sec_order().

	
summation()[source]

	Creates Summation test DataFrames from Base object

	
class benford.benford.Source(data, decimals=2, sign='all', sec_order=False, verbose=True, inform=None)[source]

	Bases: pandas.core.frame.DataFrame

Prepares the data for Analysis. pandas DataFrame subclass.

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. pos: only the positive
entries; neg: only negative entries; all: all entries but zeros.
Defaults to all.

	sec_order – choice for the Second Order Test, which cumputes the
differences between the ordered entries before running the Tests.

	verbose (bool) – tells the number of registries that are being subjected to
the analysis; defaults to True.

	Raises

	
	ValueError – if the sign arg is not in [‘all’, ‘pos’, ‘neg’]

	TypeError – if not receiving int or float as input.

	
verbose = None

	verbose or not

	Type

	(bool)

	
mantissas(report=True, show_plot=True, figsize=(15, 8), save_plot=None, save_plot_kwargs=None)[source]

	Calculates the mantissas, their mean and variance, and compares them
with the mean and variance of a Benford’s sequence.

	Parameters

	
	report – prints the mamtissas mean, variance, skewness and kurtosis
for the sequence studied, along with reference values.

	show_plot – plots the ordered mantissas and a line with the expected
inclination. Defaults to True.

	figsize – tuple that sets the figure dimensions.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	
first_digits(digs, confidence=None, high_Z='pos', limit_N=None, MAD=False, MSE=False, chi_square=False, KS=False, show_plot=True, save_plot=None, save_plot_kwargs=None, simple=False, bhat_coeff=False, bhat_dist=False, kl_diverg=False, ret_df=False)[source]

	Performs the Benford First Digits test with the series of
numbers provided, and populates the mapping dict for future
selection of the original series.

	Parameters

	
	digs (int) – number of first digits to consider. Must be 1 (first digit),
2 (first two digits) or 3 (first three digits).

	verbose (bool) – tells the number of registries that are being subjected to
the analysis; defaults to True

	confidence (int, float) – confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show, as well as to
calculate critical values for the tests’ statistics. Defaults to None.

	high_Z (int) – chooses which Z scores to be used when displaying results,
according to the confidence level chosen. Defaluts to ‘pos’,
which will highlight only values higher than the expexted
frequencies; ‘all’ will highlight both extremes (positive and
negative); and an integer, which will use the first n entries,
positive and negative, regardless of whether Z is higher than
the confidence or not.

	limit_N (int) – sets a limit to N as the sample size for the calculation of
the Z scores if the sample is too big. Defaults to None.

	MAD (bool) – calculates the Mean Absolute Difference between the
found and the expected distributions; defaults to False.

	MSE (bool) – calculates the Mean Square Error of the sample; defaults to
False.

	bhat_coeff (bool) – computes the Bhattacharyya Coefficient between
the found and the expected (Benford) digits distribution; defaults
to Fasle

	bhat_dist (bool) – calculates the Bhattacharyya Distance between
the found and the expected (Benford) digits distribution; defaults
to Fasle

	kl_diverg (bool) – calculates the Kulback-Laibler Divergence between
the found and the expected (Benford) digits distribution;
defaults to False

	show_plot (bool) – draws the test plot. Defaults to True.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	ret_df – returns the test DataFrame. Defaults to False. True if run by
the test function.

	Returns

	
	DataFrame with the Expected and Found proportions, and the Z scores of

	the differences

	
second_digit(confidence=None, high_Z='pos', limit_N=None, MAD=False, MSE=False, chi_square=False, KS=False, bhat_coeff=False, bhat_dist=False, kl_diverg=False, show_plot=True, save_plot=None, save_plot_kwargs=None, simple=False, ret_df=False)[source]

	Performs the Benford Second Digit test with the series of
numbers provided.

	Parameters

	
	verbose (bool) – tells the number of registries that are being subjected to
the analysis; defaults to True

	MAD (bool) – calculates the Mean Absolute Difference between the
found and the expected distributions; defaults to False.

	confidence (int, float) – confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show, as well as to
calculate critical values for the tests’ statistics. Defaults to None.

	high_Z (int) – chooses which Z scores to be used when displaying results,
according to the confidence level chosen. Defaluts to ‘pos’,
which will highlight only values higher than the expexted
frequencies; ‘all’ will highlight both extremes (positive and
negative); and an integer, which will use the first n entries,
positive and negative, regardless of whether Z is higher than
the confidence or not.

	limit_N (int) – sets a limit to N as the sample size for the calculation of
the Z scores if the sample is too big. Defaults to None.

	MSE (bool) – calculates the Mean Square Error of the sample; defaults to
False.

	bhat_coeff (bool) – computes the Bhattacharyya Coefficient between
the found and the expected (Benford) digits distribution; defaults
to Fasle

	bhat_dist (bool) – calculates the Bhattacharyya Distance between
the found and the expected (Benford) digits distribution; defaults
to Fasle

	kl_diverg (bool) – calculates the Kulback-Laibler Divergence between
the found and the expected (Benford) digits distribution;
defaults to False

	show_plot (bool) – draws the test plot.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	ret_df – returns the test DataFrame. Defaults to False. True if run by
the test function.

	Returns

	
	DataFrame with the Expected and Found proportions, and the Z scores of

	the differences

	
last_two_digits(confidence=None, high_Z='pos', limit_N=None, MAD=False, MSE=False, chi_square=False, KS=False, bhat_coeff=False, bhat_dist=False, kl_diverg=False, show_plot=True, save_plot=None, save_plot_kwargs=None, simple=False, ret_df=False)[source]

	Performs the Benford Last Two Digits test with the series of
numbers provided.

	Parameters

	
	verbose (bool) – tells the number of registries that are being subjected to
the analysis; defaults to True

	MAD (bool) – calculates the Mean Absolute Difference between the
found and the expected distributions; defaults to False.

	confidence (int, float) – confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show, as well as to
calculate critical values for the tests’ statistics. Defaults to None.

	high_Z (int) – chooses which Z scores to be used when displaying results,
according to the confidence level chosen. Defaluts to ‘pos’,
which will highlight only values higher than the expexted
frequencies; ‘all’ will highlight both extremes (positive and
negative); and an integer, which will use the first n entries,
positive and negative, regardless of whether Z is higher than
the confidence or not.

	limit_N (int) – sets a limit to N as the sample size for the calculation of
the Z scores if the sample is too big. Defaults to None.

	MSE (bool) – calculates the Mean Square Error of the sample; defaults to
False.

	bhat_coeff (bool) – computes the Bhattacharyya Coefficient between
the found and the expected (Benford) digits distribution; defaults
to Fasle

	bhat_dist (bool) – calculates the Bhattacharyya Distance between
the found and the expected (Benford) digits distribution; defaults
to Fasle

	kl_diverg (bool) – calculates the Kulback-Laibler Divergence between
the found and the expected (Benford) digits distribution;
defaults to False

	show_plot (bool) – draws the test plot.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	Returns

	
	DataFrame with the Expected and Found proportions, and the Z scores of

	the differences

	
summation(digs=2, top=20, show_plot=True, save_plot=None, save_plot_kwargs=None, ret_df=False)[source]

	Performs the Summation test. In a Benford series, the sums of the
entries begining with the same digits tends to be the same.

	Parameters

	
	digs – tells the first digits to use. 1- first; 2- first two;
3- first three. Defaults to 2.

	top – choses how many top values to show. Defaults to 20.

	show_plot – plots the results. Defaults to True.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	Returns

	
	DataFrame with the Expected and Found proportions, and their

	absolute differences

	
duplicates(top_Rep=20, inform=None)[source]

	Performs a duplicates test and maps the duplicates count in descending
order.

	Parameters

	
	verbose (bool) – tells how many duplicated entries were found and prints the
top numbers according to the top_Rep argument. Defaluts to True.

	top_Rep – int or None. Chooses how many duplicated entries will be
shown withe the top repititions. Defaluts to 20. If None, returns
al the ordered repetitions.

	Returns

	
	DataFrame with the duplicated records and their occurrence counts,

	in descending order (if verbose is False; if True, prints to
terminal).

	Raises

	ValueError – if the top_Rep arg is not int or None.

	
class benford.benford.Roll_mad(data, test, window, decimals=2, sign='all')[source]

	Bases: object

Applies the MAD to sequential subsets of the Series, returning another
Series.

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	test – tells which test to use. 1: Fisrt Digits; 2: First Two Digits;
3: First Three Digits; 22: Second Digit; and -2: Last Two Digits.

	window – size of the subset to be used.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. pos: only the positive
entries; neg: only negative entries; all: all entries but zeros.
Defaults to all.

	
test = None

	the test (F1D, SD, F2D…) used for the MAD calculation and critical values

	
show_plot(figsize=(15, 8), save_plot=None, save_plot_kwargs=None)[source]

	Shows the rolling MAD plot

	Parameters

	
	figsize – the figure dimensions.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when save_plot is a string with the figure file
path/name.

	
class benford.benford.Roll_mse(data, test, window, decimals=2, sign='all')[source]

	Bases: object

Applies the MSE to sequential subsets of the Series, returning another
Series.

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	test – tells which test to use. 1: Fisrt Digits; 2: First Two Digits;
3: First Three Digits; 22: Second Digit; and -2: Last Two Digits.

	window – size of the subset to be used.
decimals: number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. ‘pos’: only the positive
entries; ‘neg’: only negative entries; ‘all’: all entries but zeros.
Defaults to ‘all’.

	
show_plot(figsize=(15, 8), save_plot=None, save_plot_kwargs=None)[source]

	Shows the rolling MSE plot

	Parameters

	
	figsize – the figure dimensions.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when save_plot is a string with the figure file
path/name.

	
benford.benford.first_digits(data, digs, decimals=2, sign='all', verbose=True, confidence=None, high_Z='pos', limit_N=None, MAD=False, MSE=False, chi_square=False, KS=False, show_plot=True, save_plot=None, save_plot_kwargs=None, inform=None)[source]

	Performs the Benford First Digits test on the series of
numbers provided.

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. ‘pos’: only the positive
entries; ‘neg’: only negative entries; ‘all’: all entries but zeros.
Defaults to ‘all’.

	digs (int) – number of first digits to consider. Must be 1 (first digit),
2 (first two digits) or 3 (first three digits).

	verbose (bool) – tells the number of registries that are being subjected to
the analysis and returns tha analysis DataFrame sorted by the
highest Z score down. Defaults to True.

	MAD (bool) – calculates the Mean Absolute Difference between the
found and the expected distributions; defaults to False.

	confidence (int, float) – confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show. Defaults to None.

	high_Z (int) – chooses which Z scores to be used when displaying results,
according to the confidence level chosen. Defaluts to ‘pos’,
which will highlight only values higher than the expexted
frequencies; ‘all’ will highlight both extremes (positive and
negative); and an integer, which will use the first n entries,
positive and negative, regardless of whether Z is higher than
the confidence or not.

	limit_N (int) – sets a limit to N as the sample size for the calculation of
the Z scores if the sample is too big. Defaults to None.

	MSE (bool) – calculates the Mean Square Error of the sample; defaults to
False.

	chi_square – calculates the chi_square statistic of the sample and
compares it with a critical value, according to the confidence
level chosen and the series’s degrees of freedom. Defaults to
False. Requires confidence != None.

	KS – calculates the Kolmogorov-Smirnov test, comparing the cumulative
distribution of the sample with the Benford’s, according to the
confidence level chosen. Defaults to False. Requires confidence
!= None.

	show_plot (bool) – draws the test plot.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	Returns

	
	DataFrame with the Expected and Found proportions, and the Z scores of

	the differences if the confidence is not None.

	
benford.benford.second_digit(data, decimals=2, sign='all', verbose=True, confidence=None, high_Z='pos', limit_N=None, MAD=False, MSE=False, chi_square=False, KS=False, show_plot=True, save_plot=None, save_plot_kwargs=None, inform=None)[source]

	Performs the Benford Second Digits test on the series of
numbers provided.

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. ‘pos’: only the positive
entries; ‘neg’: only negative entries; ‘all’: all entries but zeros.
Defaults to ‘all’.

	verbose (bool) – tells the number of registries that are being subjected to
the analysis and returns tha analysis DataFrame sorted by the
highest Z score down. Defaults to True.

	MAD (bool) – calculates the Mean Absolute Difference between the
found and the expected distributions; defaults to False.

	confidence (int, float) – confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show. Defaults to None.

	high_Z (int) – chooses which Z scores to be used when displaying results,
according to the confidence level chosen. Defaluts to ‘pos’,
which will highlight only values higher than the expexted
frequencies; ‘all’ will highlight both extremes (positive and
negative); and an integer, which will use the first n entries,
positive and negative, regardless of whether Z is higher than
the confidence or not.

	limit_N (int) – sets a limit to N as the sample size for the calculation of
the Z scores if the sample is too big. Defaults to None.

	MSE (bool) – calculates the Mean Square Error of the sample; defaults to
False.

	chi_square – calculates the chi_square statistic of the sample and
compares it with a critical value, according to the confidence
level chosen and the series’s degrees of freedom. Defaults to
False. Requires confidence != None.

	KS – calculates the Kolmogorov-Smirnov test, comparing the cumulative
distribution of the sample with the Benford’s, according to the
confidence level chosen. Defaults to False. Requires confidence
!= None.

	show_plot (bool) – draws the test plot.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	Returns

	
	DataFrame with the Expected and Found proportions, and the Z scores of

	the differences if the confidence is not None.

	
benford.benford.last_two_digits(data, decimals=2, sign='all', verbose=True, confidence=None, high_Z='pos', limit_N=None, MAD=False, MSE=False, chi_square=False, KS=False, show_plot=True, save_plot=None, save_plot_kwargs=None, inform=None)[source]

	Performs the Last Two Digits test on the series of
numbers provided.

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column,with values being
integers or floats.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. ‘pos’: only the positive
entries; ‘neg’: only negative entries; ‘all’: all entries but zeros.
Defaults to ‘all’.

	verbose (bool) – tells the number of registries that are being subjected to
the analysis and returns tha analysis DataFrame sorted by the
highest Z score down. Defaults to True.

	confidence (int, float) – confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show. Defaults to None.

	high_Z (int) – chooses which Z scores to be used when displaying results,
according to the confidence level chosen. Defaluts to ‘pos’,
which will highlight only values higher than the expexted
frequencies; ‘all’ will highlight both extremes (positive and
negative); and an integer, which will use the first n entries,
positive and negative, regardless of whether Z is higher than
the confidence or not.

	limit_N (int) – sets a limit to N as the sample size for the calculation of
the Z scores if the sample is too big. Defaults to None.

	MAD (bool) – calculates the Mean Absolute Difference between the
found and the expected distributions; defaults to False.

	MSE (bool) – calculates the Mean Square Error of the sample; defaults to
False.

	chi_square – calculates the chi_square statistic of the sample and
compares it with a critical value, according to the confidence
level chosen and the series’s degrees of freedom. Defaults to
False. Requires confidence != None.

	KS – calculates the Kolmogorov-Smirnov test, comparing the cumulative
distribution of the sample with the Benford’s, according to the
confidence level chosen. Defaults to False. Requires confidence
!= None.

	show_plot (bool) – draws the test plot.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	Returns

	
	DataFrame with the Expected and Found proportions, and the Z scores of

	the differences if the confidence is not None.

	
benford.benford.mantissas(data, report=True, show_plot=True, arc_test=True, save_plot=None, save_plot_kwargs=None, inform=None)[source]

	Extraxts the mantissas of the records logarithms

	Parameters

	
	data – sequence to compute mantissas from, numpy 1D array, pandas Series
of pandas DataFrame column.

	report – prints the mamtissas mean, variance, skewness and kurtosis
for the sequence studied, along with reference values.

	show_plot – plots the ordered mantissas and a line with the expected
inclination. Defaults to True.

	arc_test – draws the Arc Test plot. Defaluts to True.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	Returns

	Series with the data mantissas.

	
benford.benford.summation(data, digs=2, decimals=2, sign='all', top=20, verbose=True, show_plot=True, save_plot=None, save_plot_kwargs=None, inform=None)[source]

	Performs the Summation test. In a Benford series, the sums of the
entries begining with the same digits tends to be the same.
Works only with the First Digits (1, 2 or 3) test.

	Parameters

	
	digs – tells the first digits to use: 1- first; 2- first two;
3- first three. Defaults to 2.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	top – choses how many top values to show. Defaults to 20.

	show_plot – plots the results. Defaults to True.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	Returns

	
	DataFrame with the Summation test, whether sorted in descending order

	(if verbose == True) or not.

	
benford.benford.mad(data, test, decimals=2, sign='all', verbose=False)[source]

	Calculates the Mean Absolute Deviation of the Series

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	test – informs which base test to use for the mad.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. pos: only the positive
entries; neg: only negative entries; all: all entries but zeros.
Defaults to all.

	Returns

	the Mean Absolute Deviation of the Series

	Return type

	float

	
benford.benford.mse(data, test, decimals=2, sign='all', verbose=False)[source]

	Calculates the Mean Squared Error of the Series

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	test – informs which base test to use for the mad.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. pos: only the positive
entries; neg: only negative entries; all: all entries but zeros.
Defaults to all.

	Returns

	the Mean Squared Error of the Series

	Return type

	float

	
benford.benford.bhattacharyya_distance(data, test, decimals, sign='all', verbose=False)[source]

	Computes the Bhattacharyya Distance between the Found and the Expected
(Benford) digits distributions, according toe the test chosen
(First, Second, First Two…)

	Parameters

	
	data (ndarray, Series) – sequence to be evaluated, with values being
integers or floats.

	test (int, str) – informs which base test to be used.

	decimals (int) – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign (str, optional) – tells which portion of the data to consider.
pos: only the positive entries; neg: only negative entries; all:
all entries but zeros. Defaults to “all”.

	Returns

	the Bhattacharyya Distance between the distributions

	Return type

	float

	
benford.benford.kullback_leibler_divergence(data, test, decimals, sign='all', verbose=False)[source]

	Computes the Kulback-Leibler Divergence between the Found and the
Expected (Benford) digits distributions, according toe the test chosen
(First, Second, First Two…).

	Parameters

	
	data (ndarray, Series) – sequence to be evaluated, with values being
integers or floats.

	test (int, str) – informs which base test to be used.

	decimals (int) – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign (str, optional) – tells which portion of the data to consider.
pos: only the positive entries; neg: only negative entries; all:
all entries but zeros. Defaults to “all”.

	Returns

	the Kulback-Leibler Divergence between the distributions

	Return type

	float

	
benford.benford.mad_summ(data, test, decimals=2, sign='all', verbose=False)[source]

	Calculate the Mean Absolute Deviation of the Summation Test

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	test – informs which base test to use for the summation mad.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. pos: only the positive
entries; neg: only negative entries; all: all entries but zeros.
Defaults to all.

	Returns

	the Mean Absolute Deviation of the Summation Test

	Return type

	float

	
benford.benford.rolling_mad(data, test, window, decimals=2, sign='all', show_plot=False, save_plot=None, save_plot_kwargs=None)[source]

	Applies the MAD to sequential subsets of the records.

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	test – tells which test to use. 1: Fisrt Digits; 2: First Two Digits;
3: First Three Digits; 22: Second Digit; and -2: Last Two Digits.

	window – size of the subset to be used.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. pos: only the positive
entries; neg: only negative entries; all: all entries but zeros.
Defaults to all.

	show_plot (bool) – draws the test plot.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	Returns

	Series with sequentially computed MADs.

	
benford.benford.rolling_mse(data, test, window, decimals=2, sign='all', show_plot=False, save_plot=None, save_plot_kwargs=None)[source]

	Applies the MSE to sequential subsets of the records.

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	test – tells which test to use. 1: Fisrt Digits; 2: First Two Digits;
3: First Three Digits; 22: Second Digit; and -2: Last Two Digits.

	window – size of the subset to be used.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. pos: only the positive
entries; neg: only negative entries; all: all entries but zeros.
Defaults to all.

	show_plot (bool) – draws the test plot.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	Returns

	Series with sequentially computed MSEs.

	
benford.benford.duplicates(data, top_Rep=20, verbose=True, inform=None)[source]

	Performs a duplicates test and maps the duplicates count in descending
order.

	Parameters

	
	data – sequence to take the duplicates from. pandas Series or
numpy Ndarray.

	verbose (bool) – tells how many duplicated entries were found and prints the
top numbers according to the top_Rep argument. Defaluts to True.

	top_Rep – chooses how many duplicated entries will be
shown withe the top repititions. int or None. Defaluts to 20.
If None, returns al the ordered repetitions.

	Returns

	DataFrame with the duplicated records and their respective counts

	Raises

	ValueError – if the top_Rep arg is not int or None.

	
benford.benford.second_order(data, test, decimals=2, sign='all', verbose=True, MAD=False, confidence=None, high_Z='pos', limit_N=None, MSE=False, show_plot=True, save_plot=None, save_plot_kwargs=None, inform=None)[source]

	Performs the chosen test after subtracting the ordered sequence by itself.
Hence Second Order.

	Parameters

	
	data – sequence of numbers to be evaluated. Must be a numpy 1D array,
a pandas Series or a pandas DataFrame column, with values being
integers or floats.

	test – the test to be performed - 1 or ‘F1D’: First Digit; 2 or ‘F2D’:
First Two Digits; 3 or ‘F3D’: First three Digits; 22 or ‘SD’:
Second Digits; -2 or ‘L2D’: Last Two Digits.

	decimals – number of decimal places to consider. Defaluts to 2.
If integers, set to 0. If set to -infer-, it will remove the zeros
and consider up to the fifth decimal place to the right, but will
loose performance.

	sign – tells which portion of the data to consider. pos: only the positive
entries; neg: only negative entries; all: all entries but zeros.
Defaults to all.

	verbose (bool) – tells the number of registries that are being subjected to
the analysis and returns tha analysis DataFrame sorted by the
highest Z score down. Defaults to True.

	MAD (bool) – calculates the Mean Absolute Difference between the
found and the expected distributions; defaults to False.

	confidence (int, float) – confidence level to draw lower and upper limits when
plotting and to limit the top deviations to show. Defaults to None.

	high_Z (int) – chooses which Z scores to be used when displaying results,
according to the confidence level chosen. Defaluts to ‘pos’,
which will highlight only values higher than the expexted
frequencies; ‘all’ will highlight both extremes (positive and
negative); and an integer, which will use the first n entries,
positive and negative, regardless of whether Z is higher than
the confidence or not.

	limit_N (int) – sets a limit to N as the sample size for the calculation of
the Z scores if the sample is too big. Defaults to None.

	MSE (bool) – calculates the Mean Square Error of the sample; defaults to
False.

	chi_square – calculates the chi_square statistic of the sample and
compares it with a critical value, according to the confidence
level chosen and the series’s degrees of freedom. Defaults to
False. Requires confidence != None.

	KS – calculates the Kolmogorov-Smirnov test, comparing the cumulative
distribution of the sample with the Benford’s, according to the
confidence level chosen. Defaults to False. Requires confidence
!= None.

	show_plot (bool) – draws the test plot.

	save_plot (str) – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs (dict) – any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	Returns

	
	DataFrame of the test chosen, but applied on Second Order pre-

	processed data.

benford.expected module

	
class benford.expected.First(digs, plot=True, save_plot=None, save_plot_kwargs=None)[source]

	Bases: pandas.core.frame.DataFrame

Holds the expected probabilities of the First, First Two, or
First Three digits according to Benford’s distribution.

	Parameters

	
	digs – 1, 2 or 3 - tells which of the first digits to consider:
1 for the First Digit, 2 for the First Two Digits and 3 for
the First Three Digits.

	plot – option to plot a bar chart of the Expected proportions.
Defaults to True.

	save_plot – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs – dict with any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	
class benford.expected.Second(plot=True, save_plot=None, save_plot_kwargs=None)[source]

	Bases: pandas.core.frame.DataFrame

Holds the expected probabilities of the Second Digits
according to Benford’s distribution.

	Parameters

	
	plot – option to plot a bar chart of the Expected proportions.
Defaults to True.

	save_plot – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs – dict with any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

	
class benford.expected.LastTwo(num=False, plot=True, save_plot=None, save_plot_kwargs=None)[source]

	Bases: pandas.core.frame.DataFrame

Holds the expected probabilities of the Last Two Digits
according to Benford’s distribution.

	Parameters

	
	plot – option to plot a bar chart of the Expected proportions.
Defaults to True.

	save_plot – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension. Only available when
plot=True.

	save_plot_kwargs – dict with any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
Only available when plot=True and save_plot is a string with the
figure file path/name.

benford.stats module

	
benford.stats.Z_score(frame, N)[source]

	Computes the Z statistics for the proportions studied

	Parameters

	
	frame – DataFrame with the expected proportions and the already calculated
Absolute Diferences between the found and expeccted proportions

	N – sample size

	Returns

	Series of computed Z scores

	
benford.stats.chi_sq(frame, ddf, confidence, verbose=True)[source]

	Comnputes the chi-square statistic of the found distributions and compares
it with the critical chi-square of such a sample, according to the
confidence level chosen and the degrees of freedom - len(sample) -1.

	Parameters

	
	frame – DataFrame with Found, Expected and their difference columns.

	ddf – Degrees of freedom to consider.

	confidence – Confidence level to look up critical value.

	verbose – prints the chi-squre result and compares to the critical
chi-square for the sample. Defaults to True.

	Returns

	
	The computed Chi square statistic and the critical chi square

	(according) to the degrees of freedom and confidence level,
for comparison. None if confidence is None

	
benford.stats.chi_sq_2(frame)[source]

	Computes the chi-square statistic of the found distributions

	Parameters

	frame – DataFrame with Found, Expected and their difference columns.

	Returns

	The computed Chi square statistic

	
benford.stats.kolmogorov_smirnov(frame, confidence, N, verbose=True)[source]

	Computes the Kolmogorov-Smirnov test of the found distributions
and compares it with the critical chi-square of such a sample,
according to the confidence level chosen.

	Parameters

	
	frame – DataFrame with Foud and Expected distributions.

	confidence – Confidence level to look up critical value.

	N – Sample size

	verbose – prints the KS result and the critical value for the sample.
Defaults to True.

	Returns

	
	The Suprem, which is the greatest absolute difference between the

	Found and the expected proportions, and the Kolmogorov-Smirnov
critical value according to the confidence level, for ccomparison

	
benford.stats.kolmogorov_smirnov_2(frame)[source]

	Computes the Kolmogorov-Smirnov test of the found distributions

	Parameters

	frame – DataFrame with Foud and Expected distributions.

	Returns

	
	The Suprem, which is the greatest absolute difference between the

	Found end th expected proportions

	
benford.stats.mad(frame, test, verbose=True)[source]

	Computes the Mean Absolute Deviation (MAD) between the found and the
expected proportions.

	Parameters

	
	frame – DataFrame with the Absolute Deviations already calculated.

	test – Test to compute the MAD from (F1D, SD, F2D…)

	verbose – prints the MAD result and compares to limit values of
conformity. Defaults to True.

	Returns

	
	The Mean of the Absolute Deviations between the found and expected

	proportions.

	
benford.stats.mse(frame, verbose=True)[source]

	Computes the test’s Mean Square Error

	Parameters

	
	frame – DataFrame with the already computed Absolute Deviations between
the found and expected proportions

	verbose – Prints the MSE. Defaults to True.

	Returns

	Mean of the squared differences between the found and the expected proportions.

benford.viz module

	
benford.viz.plot_expected(df, digs, save_plot=None, save_plot_kwargs=None)[source]

	Plots the Expected Benford Distributions

	Parameters

	
	df – DataFrame with the Expected Proportions

	digs – Test’s digit

	save_plot – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs – dict with any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

	
benford.viz.plot_digs(df, x, y_Exp, y_Found, N, figsize, conf_Z, text_x=False, save_plot=None, save_plot_kwargs=None)[source]

	Plots the digits tests results

	Parameters

	
	df – DataFrame with the data to be plotted

	x – sequence to be used in the x axis

	y_Exp – sequence of the expected proportions to be used in the y axis
(line)

	y_Found – sequence of the found proportions to be used in the y axis
(bars)

	N – lenght of sequence, to be used when plotting the confidence levels

	figsize – tuple to state the size of the plot figure

	conf_Z – Confidence level

	save_pic – file path to save figure

	text_x – Forces to show all x ticks labels. Defaluts to True.

	save_plot – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs – dict with any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

	
benford.viz.plot_sum(df, figsize, li, text_x=False, save_plot=None, save_plot_kwargs=None)[source]

	Plots the summation test results

	Parameters

	
	df – DataFrame with the data to be plotted

	figsize – sets the dimensions of the plot figure

	li – value with which to draw the horizontal line

	save_plot – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs – dict with any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

	
benford.viz.plot_ordered_mantissas(col, figsize=(12, 12), save_plot=None, save_plot_kwargs=None)[source]

	
	Plots the ordered mantissas and compares them to the expected, straight

	line that should be formed in a Benford-cmpliant set.

	Parameters

	
	col (Series) – column of mantissas to plot.

	figsize (tuple) – sets the dimensions of the plot figure.

	save_plot – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs – dict with any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

	
benford.viz.plot_mantissa_arc_test(df, gravity_center, grid=True, figsize=12, save_plot=None, save_plot_kwargs=None)[source]

	Draws thee Mantissa Arc Test after computing X and Y circular coordinates
for every mantissa and the center of gravity for the set

	Parameters

	
	df (DataFrame) – pandas DataFrame with the mantissas and the X and Y
coordinates.

	gravity_center (tuple) – coordinates for plottling the gravity center

	grid (bool) – show grid. Defaults to True.

	figsize (int) – figure dimensions. No need to be a tuple, since the
figure is a square.

	save_plot – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs – dict with any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

	
benford.viz.plot_roll_mse(roll_series, figsize, save_plot=None, save_plot_kwargs=None)[source]

	Shows the rolling MSE plot

	Parameters

	
	roll_series – pd.Series resultant form rolling mse.

	figsize – the figure dimensions.

	save_plot – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs – dict with any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

	
benford.viz.plot_roll_mad(roll_mad, figsize, save_plot=None, save_plot_kwargs=None)[source]

	Shows the rolling MAD plot

	Parameters

	
	roll_mad – pd.Series resultant form rolling mad.

	figsize – the figure dimensions.

	save_plot – string with the path/name of the file in which the generated
plot will be saved. Uses matplotlib.pyplot.savefig(). File format
is infered by the file name extension.

	save_plot_kwargs – dict with any of the kwargs accepted by
matplotlib.pyplot.savefig()
https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 benford	

 	
 	
 benford.benford	

 	
 	
 benford.expected	

 	
 	
 benford.stats	

 	
 	
 benford.viz	

Index

 A
 | B
 | C
 | D
 | F
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | Z

A

 	
 	all_confidences (benford.benford.Benford attribute)

 	
 	arc_test() (benford.benford.Mantissas method)

B

 	
 	base (benford.benford.Benford attribute)

 	Base (class in benford.benford)

 	Benford (class in benford.benford)

 	benford.benford (module)

 	
 	benford.expected (module)

 	benford.stats (module)

 	benford.viz (module)

 	bhattacharyya_distance() (in module benford.benford)

C

 	
 	chi_sq() (in module benford.stats)

 	chi_sq_2() (in module benford.stats)

 	chi_square (benford.benford.Test attribute)

 	chosen (benford.benford.Benford attribute)

 	
 	confidence (benford.benford.Benford attribute)

 	(benford.benford.Summ attribute)

 	(benford.benford.Test attribute)

 	critical_values (benford.benford.Test attribute)

D

 	
 	data (benford.benford.Benford attribute)

 	(benford.benford.Mantissas attribute)

 	ddf (benford.benford.Test attribute)

 	
 	digs (benford.benford.Test attribute)

 	duplicates() (benford.benford.Source method)

 	(in module benford.benford)

F

 	
 	First (class in benford.expected)

 	
 	first_digits() (benford.benford.Source method)

 	(in module benford.benford)

K

 	
 	kolmogorov_smirnov() (in module benford.stats)

 	kolmogorov_smirnov_2() (in module benford.stats)

 	
 	KS (benford.benford.Test attribute)

 	kullback_leibler_divergence() (in module benford.benford)

L

 	
 	last_two_digits() (benford.benford.Source method)

 	(in module benford.benford)

 	
 	LastTwo (class in benford.expected)

 	limit_N (benford.benford.Benford attribute)

M

 	
 	MAD (benford.benford.Summ attribute)

 	(benford.benford.Test attribute)

 	mad() (in module benford.benford)

 	(in module benford.stats)

 	mad_summ() (in module benford.benford)

 	
 	Mantissas (class in benford.benford)

 	mantissas() (benford.benford.Benford method)

 	(benford.benford.Source method)

 	(in module benford.benford)

 	mse() (in module benford.benford)

 	(in module benford.stats)

N

 	
 	N (benford.benford.Test attribute)

P

 	
 	plot_digs() (in module benford.viz)

 	plot_expected() (in module benford.viz)

 	plot_mantissa_arc_test() (in module benford.viz)

 	
 	plot_ordered_mantissas() (in module benford.viz)

 	plot_roll_mad() (in module benford.viz)

 	plot_roll_mse() (in module benford.viz)

 	plot_sum() (in module benford.viz)

R

 	
 	report() (benford.benford.Mantissas method)

 	(benford.benford.Summ method)

 	(benford.benford.Test method)

 	
 	Roll_mad (class in benford.benford)

 	Roll_mse (class in benford.benford)

 	rolling_mad() (in module benford.benford)

 	rolling_mse() (in module benford.benford)

S

 	
 	sec_order (benford.benford.Test attribute)

 	sec_order() (benford.benford.Benford method)

 	Second (class in benford.expected)

 	second_digit() (benford.benford.Source method)

 	(in module benford.benford)

 	second_order() (in module benford.benford)

 	show_plot() (benford.benford.Mantissas method)

 	(benford.benford.Roll_mad method)

 	(benford.benford.Roll_mse method)

 	(benford.benford.Summ method)

 	(benford.benford.Test method)

 	
 	sign (benford.benford.Benford attribute)

 	Source (class in benford.benford)

 	stats (benford.benford.Mantissas attribute)

 	Summ (class in benford.benford)

 	summation() (benford.benford.Benford method)

 	(benford.benford.Source method)

 	(in module benford.benford)

T

 	
 	test (benford.benford.Roll_mad attribute)

 	
 	Test (class in benford.benford)

 	tests (benford.benford.Benford attribute)

U

 	
 	update_confidence() (benford.benford.Benford method)

 	(benford.benford.Mantissas method)

 	(benford.benford.Test method)

V

 	
 	verbose (benford.benford.Benford attribute)

 	(benford.benford.Source attribute)

Z

 	
 	Z_score() (in module benford.stats)

 All modules for which code is available

	benford.benford

	benford.expected

	benford.stats

	benford.viz

 Source code for benford.benford

import warnings
from pandas import Series, DataFrame
from numpy import arange, log10, ones, abs, cos, sin, pi, mean
from .constants import CONFS, DIGS, SEC_ORDER_DIGS, REV_DIGS, TEST_NAMES, \
 MAD_CONFORM, CRIT_CHI2, CRIT_KS
from .checks import _check_digs_, _check_confidence_, _check_test_, \
 _check_num_array_, _check_high_Z_
from .utils import _set_N_, input_data, prepare, \
 subtract_sorted, prep_to_roll, mad_to_roll, mse_to_roll, \
 get_mantissas
from .expected import _get_expected_digits_ # First, Second, LastTwo
from .viz import _get_plot_args, plot_digs, plot_sum, plot_ordered_mantissas,\
 plot_mantissa_arc_test, plot_roll_mse, plot_roll_mad
from .reports import _inform_, _report_mad_, _report_test_, _deprecate_inform_,\
 _report_mantissa_
from .stats import Z_score, chi_sq, chi_sq_2, kolmogorov_smirnov,\
 kolmogorov_smirnov_2, _bhattacharyya_distance_, _bhattacharyya_coefficient,\
 _kullback_leibler_divergence_, _mantissas_ks_

[docs]class Base(DataFrame):
 """Internalizes and prepares the data for Analysis.

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. pos: only the positive
 entries; neg: only negative entries; all: all entries but zeros.
 Defaults to all.`

 Raises:
 TypeError: if not receiving `int` or `float` as input.
 """

 def __init__(self, data, decimals, sign='all', sec_order=False):

 DataFrame.__init__(self, {'seq': data})

 if (self.seq.dtype != 'float') & (self.seq.dtype != 'int'):
 raise TypeError("The sequence dtype was neither int nor "
 "float. Convert it to whether int of float, "
 "and try again.")

 if sign == 'all':
 self.seq = self.seq.loc[self.seq != 0]
 elif sign == 'pos':
 self.seq = self.seq.loc[self.seq > 0]
 else:
 self.seq = self.seq.loc[self.seq < 0]

 self.dropna(inplace=True)

 ab = self.seq.abs()

 if self.seq.dtype == 'int':
 self['ZN'] = ab
 else:
 if decimals == 'infer':
 self['ZN'] = ab.astype(str).str\
 .replace('.', '', regex=False)\
 .str.lstrip('0')\
 .str[:5].astype(int)
 else:
 self['ZN'] = (ab * (10 ** decimals)).astype(int)
 # First digits
 for col in ['F1D', 'F2D', 'F3D']:
 temp = self.ZN.loc[self.ZN >= 10 ** (REV_DIGS[col] - 1)]
 self[col] = (temp // 10 ** ((log10(temp).astype(int)) -
 (REV_DIGS[col] - 1)))
 # fill NANs with -1, which is a non-usable value for digits,
 # to be discarded later.
 self[col] = self[col].fillna(-1).astype(int)
 # Second digit
 temp_sd = self.loc[self.ZN >= 10]
 self['SD'] = (temp_sd.ZN // 10**((log10(temp_sd.ZN)).astype(int) -
 1)) % 10
 self['SD'] = self['SD'].fillna(-1).astype(int)
 # Last two digits
 temp_l2d = self.loc[self.ZN >= 1000]
 self['L2D'] = temp_l2d.ZN % 100
 self['L2D'] = self['L2D'].fillna(-1).astype(int)

[docs]class Test(DataFrame):
 """Transforms the original number sequence into a DataFrame reduced
 by the ocurrences of the chosen digits, creating other computed
 columns

 Args:
 base: The Base object with the data prepared for Analysis
 digs: Tells which test to perform: 1: first digit; 2: first two digits;
 3: furst three digits; 22: second digit; -2: last two digits.
 confidence (int, float): confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show.
 limit_N (int): sets a limit to N as the sample size for the calculation of
 the Z scores if the sample is too big. Defaults to None.

 Attributes:
 N: Number of records in the sample to consider in computations
 ddf: Degrees of Freedom to look up for the critical chi-square value
 chi_square: Chi-square statistic for the given test
 KS: Kolmogorov-Smirnov statistic for the given test
 MAD: Mean Absolute Deviation for the given test
 confidence: Confidence level to consider when setting some critical values
 digs (int): numerical representation of the test at hand. 1: F1D; 2: F2D;
 3: F3D; 22: SD; -2: L2D.
 sec_order (bool): True if the test is a Second Order one
 """

 def __init__(self, base, digs, confidence, limit_N=None, sec_order=False):
 # create a separated Expected distributions object
 super(Test, self).__init__(_get_expected_digits_(digs))
 # create column with occurrences of the digits in the base
 self['Counts'] = base[DIGS[digs]].value_counts()
 # create column with relative frequencies
 self['Found'] = base[DIGS[digs]].value_counts(normalize=True)
 self.fillna(0, inplace=True)
 # create column with absolute differences
 self['Dif'] = self.Found - self.Expected
 self['AbsDif'] = self.Dif.abs()
 self.limit_N = _set_N_(len(base), limit_N)
 self['Z_score'] = Z_score(self, self.limit_N)
 self.ddf = len(self) - 1
 self.chi_square = chi_sq_2(self)
 self.KS = kolmogorov_smirnov_2(self)
 self.MAD = self.AbsDif.mean()
 self.MSE = (self.AbsDif ** 2).mean()
 self.bhattacharyya_coefficient = _bhattacharyya_coefficient(
 self.Found.values, self.Expected.values)
 self.bhattacharyya_distance = _bhattacharyya_distance_(
 self.Found.values, self.Expected.values)
 self.kullback_leibler_divergence = _kullback_leibler_divergence_(
 self.Found.values, self.Expected.values)
 self.confidence = confidence
 self.digs = digs
 self.sec_order = sec_order

 if sec_order:
 self.name = TEST_NAMES[SEC_ORDER_DIGS[digs]]
 else:
 self.name = TEST_NAMES[DIGS[digs]]

[docs] def update_confidence(self, new_conf, check=True):
 """Sets a new confidence level for the Benford object, so as to be used to
 produce critical values for the tests

 Args:
 new_conf: new confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show, as well as to
 calculate critical values for the tests' statistics.
 check: checks the value provided for the confidence. Defaults to True
 """
 if check:
 self.confidence = _check_confidence_(new_conf)
 else:
 self.confidence = new_conf

 @property
 def critical_values(self):
 """dict: a dictionary with the critical values for the test at hand,
 according to the current confidence level."""
 crit_ks = CRIT_KS[self.confidence] / (self.limit_N ** 0.5) if self.confidence\
 else None
 return {'Z': CONFS[self.confidence],
 'KS': crit_ks,
 'chi2': CRIT_CHI2[self.ddf][self.confidence],
 'MAD': MAD_CONFORM[self.digs]}

[docs] def show_plot(self, save_plot=None, save_plot_kwargs=None):
 """Draws the test plot.

 Args:
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when save_plot is a string with the figure file
 path/name.
 """
 x, figsize, text_x = _get_plot_args(self.digs)
 plot_digs(self, x=x, y_Exp=self.Expected, y_Found=self.Found,
 N=self.limit_N, figsize=figsize, conf_Z=CONFS[self.confidence],
 text_x=text_x, save_plot=save_plot, save_plot_kwargs=save_plot_kwargs
)

[docs] def report(self, high_Z='pos', show_plot=True,
 save_plot=None, save_plot_kwargs=None):
 """Handles the report especific to the test, considering its statistics
 and according to the current confidence level.

 Args:
 high_Z (int): chooses which Z scores to be used when displaying results,
 according to the confidence level chosen. Defaluts to 'pos',
 which will highlight only values higher than the expexted
 frequencies; 'all' will highlight both extremes (positive and
 negative); and an integer, which will use the first n entries,
 positive and negative, regardless of whether Z is higher than
 the critical value or not.
 show_plot: calls the show_plot method, to draw the test plot
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.
 """
 high_Z = _check_high_Z_(high_Z)
 _report_test_(self, high_Z, self.critical_values)
 if show_plot:
 self.show_plot(save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)

[docs]class Summ(DataFrame):
 """Gets the base object and outputs a Summation test object

 Args:
 base: The Base object with the data prepared for Analysis
 test: The test for which to compute the summation
 """

 def __init__(self, base, test):
 super(Summ, self).__init__(base.abs()
 .groupby(test)[['seq']]
 .sum())
 self['Percent'] = self.seq / self.seq.sum()
 self.columns.values[0] = 'Sum'
 self.expected = 1 / len(self)
 self['AbsDif'] = (self.Percent - self.expected).abs()
 self.index = self.index.astype(int)
 #: Mean Absolute Deviation for the test
 self.MAD = self.AbsDif.mean()
 self.MSE = (self.AbsDif ** 2).mean()
 #: Confidence level to consider when setting some critical values
 self.confidence = None
 # (int): numerical representation of the test at hand
 self.digs = REV_DIGS[test]
 # (str): the name of the Summation test.
 self.name = TEST_NAMES[f'{test}_Summ']

[docs] def show_plot(self, save_plot=None, save_plot_kwargs=None):
 """Draws the Summation test plot

 Args:
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when save_plot is a string with the figure file
 path/name.
 """
 figsize=(2 * (self.digs ** 2 + 5), 1.5 * (self.digs ** 2 + 5))
 plot_sum(self, figsize, self.expected,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)

[docs] def report(self, high_diff=None, show_plot=True,
 save_plot=None, save_plot_kwargs=None):
 """Gives the report on the Summation test.

 Args:
 high_diff: Number of records to show after ordering by the absolute
 differences between the found and the expected proportions
 show_plot: calls the show_plot method, to draw the Summation test plot
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.
 """
 _report_test_(self, high_diff)
 if show_plot:
 self.show_plot(save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)

[docs]class Mantissas:
 """Computes and holds the mantissas of the logarithms of the records

 Args:
 data: sequence to compute mantissas from. numpy 1D array, pandas
 Series of pandas DataFrame column.
 confidence: confidence level for computing the critical values to
 compare with some statistics
 """

 def __init__(self, data, confidence=95, limit_N=None):

 data = Series(_check_num_array_(data))
 data = data.dropna().loc[data != 0].abs()
 self.limit_N = _set_N_(len(data), limit_N)
 #: (DataFrame): pandas DataFrame with the mantissas
 self.data = DataFrame({'Mantissa': get_mantissas(data.abs())})
 self.confidence = confidence

 @property
 def stats(self):
 # (dict): Dictionary with the mantissas statistics
 ks, crit_ks = _mantissas_ks_(self.data.Mantissa.values,
 self.confidence, self.limit_N)
 return {'Mean': self.data.Mantissa.mean(),
 'Var': self.data.Mantissa.var(),
 'Skew': self.data.Mantissa.skew(),
 'Kurt': self.data.Mantissa.kurt(),
 'KS': ks,
 'KS_critical': crit_ks}

[docs] def update_confidence(self, new_conf, check=True):
 """Sets a new confidence level for the Benford object, so as to be used to
 produce critical values for the tests

 Args:
 new_conf: new confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show, as well as to
 calculate critical values for the tests' statistics.
 check: checks the value provided for the confidence. Defaults to True
 """
 if check:
 self.confidence = _check_confidence_(new_conf)
 else:
 self.confidence = new_conf

[docs] def report(self, show_plot=True, save_plot=None, save_plot_kwargs=None):
 """Displays the Mantissas test stats.

 Args:
 show_plot: shows the Ordered Mantissas plot and the Arc Test plot.
 Defaults to True.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.
 """
 _report_mantissa_(self.stats, confidence=self.confidence)

 if show_plot:
 self.show_plot(save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)
 self.arc_test(save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)

[docs] def show_plot(self, figsize=(12, 6), save_plot=None, save_plot_kwargs=None):
 """Plots the ordered mantissas and a line with the expected
 inclination.

 Args:
 figsize (tuple): figure size dimensions
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when save_plot is a string with the figure file
 path/name.
 """
 plot_ordered_mantissas(self.data.Mantissa, figsize=figsize,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)

[docs] def arc_test(self, grid=True, figsize=12,
 save_plot=None, save_plot_kwargs=None):
 """Adds two columns to Mantissas's DataFrame equal to their "X" and "Y"
 coordinates, plots its to a scatter plot and calculates the gravity
 center of the circle.

 Args:
 grid: show grid of the plot. Defaluts to True.
 figsize (int): size of the figure to be displayed. Since it is a square,
 there is no need to provide a tuple, like is usually the case with
 matplotlib.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.
 """
 self.data['mant_x'] = cos(2 * pi * self.data.Mantissa)
 self.data['mant_y'] = sin(2 * pi * self.data.Mantissa)
 self.gravity_center = (self.data.mant_x.mean(), self.data.mant_y.mean())

 plot_mantissa_arc_test(self.data, self.gravity_center,
 grid=grid, figsize=figsize,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)

[docs]class Benford(object):
 """Initializes a Benford Analysis object and computes the proportions for
 the digits. The tets dataFrames are atributes, i.e., obj.F1D is the First
 Digit DataFrame, the obj.F2D,the First Two Digits one, and so one, F3D for
 First Three Digits, SD for Second Digit and L2D for Last Two Digits.

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a tuple with a pandas DataFrame and the name (str)
 of the chosen column. Values must be integers or floats.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. pos: only the positive
 entries; neg: only negative entries; all: all entries but zeros.
 Defaults to all.
 confidence (int, float): confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show, as well as to
 calculate critical values for the tests' statistics. Defaults to 95.
 mantissas (bool): opts for also running the mantissas Test. Defaulst to
 True
 sec_order: runs the Second Order tests, which are the Benford's tests
 performed on the differences between the ordered sample (a value minus
 the one before it, and so on). If the original series is Benford-
 compliant, this new sequence should aldo follow Beford. The Second
 Order can also be called separately, through the method sec_order().
 summation: creates the Summation DataFrames for the First, First Two, and
 First Three Digits. The summation tests can also be called separately,
 through the method summation().
 limit_N (int): sets a limit to N as the sample size for the calculation of
 the Z scores if the sample is too big. Defaults to None.
 verbose: gives some information about the data and the registries used
 and discarded for each test.

 Attributes:
 data: the raw data provided for the analysis
 chosen: the column of the DataFrame to be analysed or the data itself
 sign (str): which number sign(s) to include in the analysis
 confidence: current confidence level
 limit_N (int): sample size to use in computations
 verbose (bool): verbose or not
 base: the Base, pre-processed object
 tests (:obj:`list` of :obj:`str`): keeps track of the tests the
 instance has
 """

 def __init__(self, data, decimals=2, sign='all', confidence=95,
 mantissas=True, sec_order=False, summation=False,
 limit_N=None, verbose=True):
 self.data, self.chosen = input_data(data)
 self.decimals = decimals
 self.sign = sign
 self.confidence = _check_confidence_(confidence)
 self.limit_N = limit_N
 self.verbose = verbose
 self.base = Base(self.chosen, decimals, sign)
 self.tests = []

 # Create a DatFrame for each Test
 for key, val in DIGS.items():
 test = Test(self.base.loc[self.base[val] != -1],
 digs=key, confidence=self.confidence,
 limit_N=self.limit_N)
 setattr(self, val, test)
 self.tests.append(val)
 # dict with the numbers of discarded entries for each test column
 self._discarded = {key: val for (key, val) in
 zip(DIGS.values(),
 [len(self.base[col].loc[self.base[col] == -1])
 for col in DIGS.values()])}

 if self.verbose:
 print('\n', ' Benford Object Instantiated '.center(50, '#'), '\n')
 print(f'Initial sample size: {len(self.chosen)}.\n')
 print(f'Test performed on {len(self.base)} registries.\n')
 print(
 f'Number of discarded entries for each test:\n{self._discarded}')

 if mantissas:
 self.mantissas()

 if sec_order:
 self.sec_order()

 if summation:
 self.summation()

[docs] def update_confidence(self, new_conf, tests=None):
 """Sets (a) new confidence level(s) for the Benford object, so as to be
 used to produce critical values for the tests.

 Args:
 new_conf: new confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show, as well as to
 calculate critical values for the tests' statistics.
 tests (:obj:`list` of :obj:`str`): list of tests names (strings) to
 have their confidence updated. If only one, provide a one-element
 list, like ['F1D']. Defauts to None, in which case it will use
 the instance .test list attribute.

 Raises:
 ValueError: if the test argument is not a `list` or `None`.
 """
 self.confidence = _check_confidence_(new_conf)
 if tests is None:
 tests = self.tests
 else:
 if not isinstance(tests, list):
 raise ValueError('tests must be a list or None.')
 for test in tests:
 try:
 getattr(self, test).update_confidence(
 self.confidence, check=False)
 except AttributeError as e:
 if test in ['F1D_Summ', 'F2D_Summ', 'F3D_Summ']:
 pass
 else:
 print(e,
 f"\n\n{test} not in Benford instance tests - "
 "review test's name.")

 @property
 def all_confidences(self):
 """dict: a dictionary with a confidence level for each computed tests,
 when applicable."""
 con_dic = {}
 for key in self.tests:
 try:
 con_dic[key] = getattr(self, key).confidence
 except AttributeError:
 continue
 return con_dic

[docs] def mantissas(self):
 """Adds a Mantissas object to the tests, with all its statistics and
 plotting capabilities.
 """
 self.Mantissas = Mantissas(self.base.seq.values,
 self.confidence, self.limit_N)
 self.tests.append('Mantissas')
 if self.verbose:
 print('\nAdded Mantissas test.')

[docs] def sec_order(self):
 """Runs the Second Order tests, which are the Benford's tests
 performed on the differences between the ordered sample (a value minus
 the one before it, and so on). If the original series is Benford-
 compliant, this new sequence should aldo follow Beford. The Second
 Order can also be called separately, through the method sec_order().
 """
 #: Base instance of the differences between the ordered sample
 self.base_sec = Base(subtract_sorted(self.chosen),
 decimals=self.decimals, sign=self.sign)
 for key, val in DIGS.items():
 test = Test(self.base_sec.loc[self.base_sec[val] != -1],
 digs=key, confidence=self.confidence,
 limit_N=self.limit_N, sec_order=True)
 setattr(self, SEC_ORDER_DIGS[key], test)
 self.tests.append(f'{val}_sec')
 # No need to populate crit_vals dict, since they are the
 # same and do not depend on N
 self._discarded_sec = {key: val for (key, val) in zip(
 SEC_ORDER_DIGS.values(),
 [sum(self.base_sec[col] == -1) for col in
 DIGS.values()])}
 if self.verbose:
 print(f'\nSecond order tests run in {len(self.base_sec)} '
 'registries.\n\nNumber of discarded entries for second order'
 f' tests:\n{self._discarded_sec}')

[docs] def summation(self):
 """Creates Summation test DataFrames from Base object"""
 for test in ['F1D', 'F2D', 'F3D']:
 t = f'{test}_Summ'
 setattr(self, t, Summ(self.base, test))
 self.tests.append(t)

 if self.verbose:
 print('\nAdded Summation DataFrames to F1D, F2D and F3D Tests.')

[docs]class Source(DataFrame):
 """Prepares the data for Analysis. pandas DataFrame subclass.

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. pos: only the positive
 entries; neg: only negative entries; all: all entries but zeros.
 Defaults to all.
 sec_order: choice for the Second Order Test, which cumputes the
 differences between the ordered entries before running the Tests.
 verbose (bool): tells the number of registries that are being subjected to
 the analysis; defaults to True.

 Raises:
 ValueError: if the `sign` arg is not in ['all', 'pos', 'neg']
 TypeError: if not receiving `int` or `float` as input.
 """

 def __init__(self, data, decimals=2, sign='all', sec_order=False,
 verbose=True, inform=None):

 if sign not in ['all', 'pos', 'neg']:
 raise ValueError("The -sign- argument must be "
 "'all','pos' or 'neg'.")

 DataFrame.__init__(self, {'seq': data})

 if self.seq.dtype != 'float' and self.seq.dtype != 'int':
 raise TypeError('The sequence dtype was neither int nor float.\n'
 'Convert it to whether int or float, and try again.')

 if sign == 'pos':
 self.seq = self.seq.loc[self.seq > 0]
 elif sign == 'neg':
 self.seq = self.seq.loc[self.seq < 0]
 else:
 self.seq = self.seq.loc[self.seq != 0]

 self.dropna(inplace=True)
 #: (bool): verbose or not
 self.verbose = _deprecate_inform_(verbose, inform)
 if self.verbose:
 print(f"\nInitialized sequence with {len(self)} registries.")

 if sec_order:
 self.seq = subtract_sorted(self.seq.copy())
 self.dropna(inplace=True)
 self.reset_index(inplace=True)
 if verbose:
 print('Second Order Test. Initial series reduced '
 f'to {len(self.seq)} entries.')

 ab = self.seq.abs()

 if self.seq.dtype == 'int':
 self['ZN'] = ab
 else:
 if decimals == 'infer':
 # There is some numerical issue with Windows that required
 # implementing it differently (and slower)
 self['ZN'] = ab.astype(str)\
 .str.replace('.', '', regex=False)\
 .str.lstrip('0').str[:5]\
 .astype(int)
 else:
 self['ZN'] = (ab * (10 ** decimals)).astype(int)

[docs] def mantissas(self, report=True, show_plot=True, figsize=(15, 8),
 save_plot=None, save_plot_kwargs=None):
 """Calculates the mantissas, their mean and variance, and compares them
 with the mean and variance of a Benford's sequence.

 Args:
 report: prints the mamtissas mean, variance, skewness and kurtosis
 for the sequence studied, along with reference values.
 show_plot: plots the ordered mantissas and a line with the expected
 inclination. Defaults to True.
 figsize: tuple that sets the figure dimensions.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.
 """
 self['Mant'] = get_mantissas(self.seq.abs())
 if report:
 p = self[['seq', 'Mant']]
 p = p.loc[p.seq > 0].sort_values('Mant')
 print(f"The Mantissas MEAN is {p.Mant.mean()}. Ref: 0.5.")
 print(f"The Mantissas VARIANCE is {p.Mant.var()}. Ref: 0.083333.")
 print(f"The Mantissas SKEWNESS is {p.Mant.skew()}. \tRef: 0.")
 print(f"The Mantissas KURTOSIS is {p.Mant.kurt()}. \tRef: -1.2.")

 if show_plot:
 plot_ordered_mantissas(self.Mant, figsize=figsize,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)

[docs] def first_digits(self, digs, confidence=None, high_Z='pos',
 limit_N=None, MAD=False, MSE=False, chi_square=False,
 KS=False, show_plot=True, save_plot=None, save_plot_kwargs=None,
 simple=False, bhat_coeff = False, bhat_dist=False,
 kl_diverg=False, ret_df=False):
 """Performs the Benford First Digits test with the series of
 numbers provided, and populates the mapping dict for future
 selection of the original series.

 Args:
 digs (int): number of first digits to consider. Must be 1 (first digit),
 2 (first two digits) or 3 (first three digits).
 verbose (bool): tells the number of registries that are being subjected to
 the analysis; defaults to True
 confidence (int, float): confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show, as well as to
 calculate critical values for the tests' statistics. Defaults to None.
 high_Z (int): chooses which Z scores to be used when displaying results,
 according to the confidence level chosen. Defaluts to 'pos',
 which will highlight only values higher than the expexted
 frequencies; 'all' will highlight both extremes (positive and
 negative); and an integer, which will use the first n entries,
 positive and negative, regardless of whether Z is higher than
 the confidence or not.
 limit_N (int): sets a limit to N as the sample size for the calculation of
 the Z scores if the sample is too big. Defaults to None.
 MAD (bool): calculates the Mean Absolute Difference between the
 found and the expected distributions; defaults to False.
 MSE (bool): calculates the Mean Square Error of the sample; defaults to
 False.
 bhat_coeff (bool): computes the Bhattacharyya Coefficient between
 the found and the expected (Benford) digits distribution; defaults
 to Fasle
 bhat_dist (bool): calculates the Bhattacharyya Distance between
 the found and the expected (Benford) digits distribution; defaults
 to Fasle
 kl_diverg (bool): calculates the Kulback-Laibler Divergence between
 the found and the expected (Benford) digits distribution;
 defaults to False
 show_plot (bool): draws the test plot. Defaults to True.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.
 ret_df: returns the test DataFrame. Defaults to False. True if run by
 the test function.

 Returns:
 DataFrame with the Expected and Found proportions, and the Z scores of
 the differences
 """
 # Check on the possible values for confidence levels
 confidence = _check_confidence_(confidence)
 # Check on possible digits
 _check_digs_(digs)

 temp = self.loc[self.ZN >= 10 ** (digs - 1)]
 temp[DIGS[digs]] = (temp.ZN // 10 ** ((log10(temp.ZN).astype(
 int)) - (digs - 1))).astype(
 int)
 n, m = 10 ** (digs - 1), 10 ** (digs)
 x = arange(n, m)

 if simple:
 self.verbose = False
 show_plot = False
 df = prepare(temp[DIGS[digs]], digs, limit_N=limit_N,
 simple=True)
 else:
 N, df = prepare(temp[DIGS[digs]], digs, limit_N=limit_N,
 simple=False)

 if self.verbose:
 print(f"\nTest performed on {len(temp)} registries.\n"
 f"Discarded {len(self) - len(temp)} records < {10 ** (digs - 1)}"
 " after preparation.")
 if confidence is not None:
 inform(df, high_Z=high_Z, conf=CONFS[confidence])

 # Mean absolute difference
 if MAD:
 self.MAD = df.AbsDif.mean()
 if self.verbose:
 _report_mad_(digs, self.MAD)

 # Mean Square Error
 if MSE:
 self.MSE = (df.AbsDif ** 2).mean()

 # Chi-square statistic
 if chi_square:
 self.chi_square = chi_sq(df, ddf=len(df) - 1,
 confidence=confidence,
 verbose=self.verbose)
 # KS test
 if KS:
 self.KS = kolmogorov_smirnov(df, confidence=confidence, N=len(temp),
 verbose=self.verbose)

 if bhat_coeff:
 self.bhat_coeff = _bhattacharyya_coefficient(
 df.Found.values, df.Expected.values)

 if bhat_dist:
 self.bhat_dist = _bhattacharyya_distance_(
 df.Found.values, df.Expected.values)

 if kl_diverg:
 self.kl_diverg = _kullback_leibler_divergence_(
 df.Found.values, df.Expected.values)

 # Plotting the expected frequncies (line) against the found ones(bars)
 if show_plot:
 plot_digs(df, x=x, y_Exp=df.Expected, y_Found=df.Found, N=N,
 figsize=(2 * (digs ** 2 + 5), 1.5 * (digs ** 2 + 5)),
 conf_Z=CONFS[confidence], save_plot=save_plot,
 save_plot_kwargs=save_plot_kwargs)
 if ret_df:
 return df

[docs] def second_digit(self, confidence=None, high_Z='pos',
 limit_N=None, MAD=False, MSE=False, chi_square=False,
 KS=False, bhat_coeff=False, bhat_dist=False, kl_diverg=False,
 show_plot=True, save_plot=None, save_plot_kwargs=None,
 simple=False, ret_df=False):
 """Performs the Benford Second Digit test with the series of
 numbers provided.

 Args:
 verbose (bool): tells the number of registries that are being subjected to
 the analysis; defaults to True
 MAD (bool): calculates the Mean Absolute Difference between the
 found and the expected distributions; defaults to False.
 confidence (int, float): confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show, as well as to
 calculate critical values for the tests' statistics. Defaults to None.
 high_Z (int): chooses which Z scores to be used when displaying results,
 according to the confidence level chosen. Defaluts to 'pos',
 which will highlight only values higher than the expexted
 frequencies; 'all' will highlight both extremes (positive and
 negative); and an integer, which will use the first n entries,
 positive and negative, regardless of whether Z is higher than
 the confidence or not.
 limit_N (int): sets a limit to N as the sample size for the calculation of
 the Z scores if the sample is too big. Defaults to None.
 MSE (bool): calculates the Mean Square Error of the sample; defaults to
 False.
 bhat_coeff (bool): computes the Bhattacharyya Coefficient between
 the found and the expected (Benford) digits distribution; defaults
 to Fasle
 bhat_dist (bool): calculates the Bhattacharyya Distance between
 the found and the expected (Benford) digits distribution; defaults
 to Fasle
 kl_diverg (bool): calculates the Kulback-Laibler Divergence between
 the found and the expected (Benford) digits distribution;
 defaults to False
 show_plot (bool): draws the test plot.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.
 ret_df: returns the test DataFrame. Defaults to False. True if run by
 the test function.

 Returns:
 DataFrame with the Expected and Found proportions, and the Z scores of
 the differences
 """
 confidence = _check_confidence_(confidence)

 conf = CONFS[confidence]

 temp = self.loc[self.ZN >= 10, :]
 temp['SD'] = (temp.ZN // 10 ** ((log10(temp.ZN)).astype(
 int) - 1)) % 10

 if simple:
 self.verbose = False
 show_plot = False
 df = prepare(temp['SD'], 22, limit_N=limit_N, simple=True)
 else:
 N, df = prepare(temp['SD'], 22, limit_N=limit_N, simple=False)

 if self.verbose:
 print(f"\nTest performed on {len(temp)} registries.\nDiscarded "
 f"{len(self) - len(temp)} records < 10 after preparation.")
 if confidence is not None:
 inform(df, high_Z, conf)

 # Mean absolute difference
 if MAD:
 self.MAD = df.AbsDif.mean()
 if self.verbose:
 _report_mad_(22, self.MAD)
 # Mean Square Error
 if MSE:
 self.MSE = (df.AbsDif ** 2).mean()

 # Chi-square statistic
 if chi_square:
 self.chi_square = chi_sq(df, ddf=9, confidence=confidence,
 verbose=self.verbose)
 # KS test
 if KS:
 self.KS = kolmogorov_smirnov(df, confidence=confidence, N=len(temp),

 verbose=self.verbose)
 if bhat_coeff:
 self.bhat_coeff = _bhattacharyya_coefficient(
 df.Found.values, df.Expected.values)

 if bhat_dist:
 self.bhat_dist = _bhattacharyya_distance_(
 df.Found.values, df.Expected.values
)

 if kl_diverg:
 self.kl_diverg = _kullback_leibler_divergence_(
 df.Found.values, df.Expected.values
)

 # Plotting the expected frequncies (line) against the found ones(bars)
 if show_plot:
 plot_digs(df, x=arange(0, 10), y_Exp=df.Expected,
 y_Found=df.Found, N=N, figsize=(10, 6), conf_Z=conf,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)
 if ret_df:
 return df

[docs] def last_two_digits(self, confidence=None, high_Z='pos',
 limit_N=None, MAD=False, MSE=False, chi_square=False,
 KS=False, bhat_coeff=False, bhat_dist=False, kl_diverg=False,
 show_plot=True, save_plot=None, save_plot_kwargs=None,
 simple=False, ret_df=False):
 """Performs the Benford Last Two Digits test with the series of
 numbers provided.

 Args:
 verbose (bool): tells the number of registries that are being subjected to
 the analysis; defaults to True
 MAD (bool): calculates the Mean Absolute Difference between the
 found and the expected distributions; defaults to False.
 confidence (int, float): confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show, as well as to
 calculate critical values for the tests' statistics. Defaults to None.
 high_Z (int): chooses which Z scores to be used when displaying results,
 according to the confidence level chosen. Defaluts to 'pos',
 which will highlight only values higher than the expexted
 frequencies; 'all' will highlight both extremes (positive and
 negative); and an integer, which will use the first n entries,
 positive and negative, regardless of whether Z is higher than
 the confidence or not.
 limit_N (int): sets a limit to N as the sample size for the calculation of
 the Z scores if the sample is too big. Defaults to None.
 MSE (bool): calculates the Mean Square Error of the sample; defaults to
 False.
 bhat_coeff (bool): computes the Bhattacharyya Coefficient between
 the found and the expected (Benford) digits distribution; defaults
 to Fasle
 bhat_dist (bool): calculates the Bhattacharyya Distance between
 the found and the expected (Benford) digits distribution; defaults
 to Fasle
 kl_diverg (bool): calculates the Kulback-Laibler Divergence between
 the found and the expected (Benford) digits distribution;
 defaults to False
 show_plot (bool): draws the test plot.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.

 Returns:
 DataFrame with the Expected and Found proportions, and the Z scores of
 the differences
 """
 confidence = _check_confidence_(confidence)
 conf = CONFS[confidence]

 temp = self.loc[self.ZN >= 1000]
 temp['L2D'] = temp.ZN % 100

 if simple:
 self.verbose = False
 show_plot = False
 df = prepare(temp['L2D'], -2, limit_N=limit_N, simple=True)
 else:
 N, df = prepare(temp['L2D'], -2, limit_N=limit_N, simple=False)

 if self.verbose:
 print(f"\nTest performed on {len(temp)} registries.\n\nDiscarded "
 f"{len(self) - len(temp)} records < 1000 after preparation")
 if confidence is not None:
 inform(df, high_Z, conf)

 # Mean absolute difference
 if MAD:
 self.MAD = df.AbsDif.mean()
 if self.verbose:
 _report_mad_(-2, self.MAD)
 # Mean Square Error
 if MSE:
 self.MSE = (df.AbsDif ** 2).mean()

 # Chi-square statistic
 if chi_square:
 self.chi_square = chi_sq(df, ddf=99, confidence=confidence,
 verbose=self.verbose)
 # KS test
 if KS:
 self.KS = kolmogorov_smirnov(df, confidence=confidence, N=len(temp),
 verbose=self.verbose)

 if bhat_coeff:
 self.bhat_coeff = _bhattacharyya_coefficient(
 df.Found.values, df.Expected.values)

 if bhat_dist:
 self.bhat_dist = _bhattacharyya_distance_(
 df.Found.values, df.Expected.values)

 if kl_diverg:
 self.kl_diverg = _kullback_leibler_divergence_(
 df.Found.values, df.Expected.values)

 # Plotting expected frequencies (line) versus found ones (bars)
 if show_plot:
 plot_digs(df, x=arange(0, 100), y_Exp=df.Expected,
 y_Found=df.Found, N=N, figsize=(15, 5),
 conf_Z=conf, text_x=True, save_plot=save_plot,
 save_plot_kwargs=save_plot_kwargs)
 if ret_df:
 return df

[docs] def summation(self, digs=2, top=20, show_plot=True, save_plot=None,
 save_plot_kwargs=None, ret_df=False):
 """Performs the Summation test. In a Benford series, the sums of the
 entries begining with the same digits tends to be the same.

 Args:
 digs: tells the first digits to use. 1- first; 2- first two;
 3- first three. Defaults to 2.
 top: choses how many top values to show. Defaults to 20.
 show_plot: plots the results. Defaults to True.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.

 Returns:
 DataFrame with the Expected and Found proportions, and their
 absolute differences
 """
 _check_digs_(digs)

 if digs == 1:
 top = 9
 # Call the dict for F1D, F2D, F3D
 d = DIGS[digs]
 if d not in self.columns:
 self[d] = self.ZN.astype(str).str[:digs].astype(int)
 # Call the expected proportion according to digs
 li = 1. / (9 * (10 ** (digs - 1)))

 df = self.groupby(d).sum()
 # s.drop(0, inplace=True)
 df['Percent'] = df.ZN / df.ZN.sum()
 df.columns.values[1] = 'Summ'
 df = df[['Summ', 'Percent']]
 df['AbsDif'] = (df.Percent - li).abs()

 if self.verbose:
 # N = len(self)
 print(f"\nTest performed on {len(self)} registries.\n")
 print(f"The top {top} diferences are:\n")
 print(df[:top])

 if show_plot:
 plot_sum(df, figsize=(
 2 * (digs ** 2 + 5), 1.5 * (digs ** 2 + 5)), li=li,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)

 if ret_df:
 return df

[docs] def duplicates(self, top_Rep=20, inform=None):
 """Performs a duplicates test and maps the duplicates count in descending
 order.

 Args:
 verbose (bool): tells how many duplicated entries were found and prints the
 top numbers according to the top_Rep argument. Defaluts to True.
 top_Rep: int or None. Chooses how many duplicated entries will be
 shown withe the top repititions. Defaluts to 20. If None, returns
 al the ordered repetitions.

 Returns:
 DataFrame with the duplicated records and their occurrence counts,
 in descending order (if verbose is False; if True, prints to
 terminal).

 Raises:
 ValueError: if the `top_Rep` arg is not int or None.
 """
 if top_Rep is not None and not isinstance(top_Rep, int):
 raise ValueError('The top_Rep argument must be an int or None.')

 dup = self[['seq']][self.seq.duplicated(keep=False)]
 dup_count = dup.groupby(self.seq).count()

 dup_count.index.names = ['Entries']
 dup_count.rename(columns={'seq': 'Count'}, inplace=True)

 dup_count.sort_values('Count', ascending=False, inplace=True)

 # self.maps['dup'] = dup_count.index[:top_Rep].values # array

 if self.verbose:
 print(f'\nFound {len(dup_count)} duplicated entries.\n'
 f'The entries with the {top_Rep} highest repitition counts are:')
 print(dup_count.head(top_Rep))
 else:
 return dup_count

[docs]class Roll_mad(object):
 """Applies the MAD to sequential subsets of the Series, returning another
 Series.

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 test: tells which test to use. 1: Fisrt Digits; 2: First Two Digits;
 3: First Three Digits; 22: Second Digit; and -2: Last Two Digits.
 window: size of the subset to be used.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. pos: only the positive
 entries; neg: only negative entries; all: all entries but zeros.
 Defaults to all.

 """

 def __init__(self, data, test, window, decimals=2, sign='all'):

 #: the test (F1D, SD, F2D...) used for the MAD calculation and critical values
 self.test = _check_test_(test)

 if not isinstance(data, Source):
 data = Source(data, sign=sign, decimals=decimals, verbose=False)

 Exp, ind = prep_to_roll(data, self.test)

 self.roll_series = data[DIGS[test]].rolling(
 window=window).apply(mad_to_roll,
 args=(Exp, ind), raw=False)
 self.roll_series.dropna(inplace=True)

[docs] def show_plot(self, figsize=(15, 8), save_plot=None, save_plot_kwargs=None):
 """Shows the rolling MAD plot

 Args:
 figsize: the figure dimensions.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when save_plot is a string with the figure file
 path/name.
 """
 plot_roll_mad(self, figsize=figsize,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)

[docs]class Roll_mse(object):
 """Applies the MSE to sequential subsets of the Series, returning another
 Series.

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 test: tells which test to use. 1: Fisrt Digits; 2: First Two Digits;
 3: First Three Digits; 22: Second Digit; and -2: Last Two Digits.
 window: size of the subset to be used.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. 'pos': only the positive
 entries; 'neg': only negative entries; 'all': all entries but zeros.
 Defaults to 'all'.
 """

 def __init__(self, data, test, window, decimals=2, sign='all'):

 test = _check_test_(test)

 if not isinstance(data, Source):
 data = Source(data, sign=sign, decimals=decimals, verbose=False)

 Exp, ind = prep_to_roll(data, test)

 self.roll_series = data[DIGS[test]].rolling(
 window=window).apply(mse_to_roll,
 args=(Exp, ind), raw=False)
 self.roll_series.dropna(inplace=True)

[docs] def show_plot(self, figsize=(15, 8), save_plot=None, save_plot_kwargs=None):
 """Shows the rolling MSE plot

 Args:
 figsize: the figure dimensions.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when save_plot is a string with the figure file
 path/name.
 """
 plot_roll_mse(self.roll_series, figsize=figsize,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)

[docs]def first_digits(data, digs, decimals=2, sign='all', verbose=True,
 confidence=None, high_Z='pos', limit_N=None,
 MAD=False, MSE=False, chi_square=False, KS=False,
 show_plot=True, save_plot=None, save_plot_kwargs=None,
 inform=None):
 """Performs the Benford First Digits test on the series of
 numbers provided.

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. 'pos': only the positive
 entries; 'neg': only negative entries; 'all': all entries but zeros.
 Defaults to 'all'.
 digs (int): number of first digits to consider. Must be 1 (first digit),
 2 (first two digits) or 3 (first three digits).
 verbose (bool): tells the number of registries that are being subjected to
 the analysis and returns tha analysis DataFrame sorted by the
 highest Z score down. Defaults to True.
 MAD (bool): calculates the Mean Absolute Difference between the
 found and the expected distributions; defaults to False.
 confidence (int, float): confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show. Defaults to None.
 high_Z (int): chooses which Z scores to be used when displaying results,
 according to the confidence level chosen. Defaluts to 'pos',
 which will highlight only values higher than the expexted
 frequencies; 'all' will highlight both extremes (positive and
 negative); and an integer, which will use the first n entries,
 positive and negative, regardless of whether Z is higher than
 the confidence or not.
 limit_N (int): sets a limit to N as the sample size for the calculation of
 the Z scores if the sample is too big. Defaults to None.
 MSE (bool): calculates the Mean Square Error of the sample; defaults to
 False.
 chi_square: calculates the chi_square statistic of the sample and
 compares it with a critical value, according to the confidence
 level chosen and the series's degrees of freedom. Defaults to
 False. Requires confidence != None.
 KS: calculates the Kolmogorov-Smirnov test, comparing the cumulative
 distribution of the sample with the Benford's, according to the
 confidence level chosen. Defaults to False. Requires confidence
 != None.
 show_plot (bool): draws the test plot.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.

 Returns:
 DataFrame with the Expected and Found proportions, and the Z scores of
 the differences if the confidence is not None.
 """
 verbose = _deprecate_inform_(verbose, inform)

 if not isinstance(data, Source):
 data = Source(data, decimals=decimals, sign=sign, verbose=verbose)

 data = data.first_digits(digs, confidence=confidence, high_Z=high_Z,
 limit_N=limit_N, MAD=MAD, MSE=MSE,
 chi_square=chi_square, KS=KS, show_plot=show_plot,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs,
 ret_df=True)

 if confidence is not None:
 data = data[['Counts', 'Found', 'Expected', 'Z_score']]
 return data.sort_values('Z_score', ascending=False)
 else:
 return data[['Counts', 'Found', 'Expected']]

[docs]def second_digit(data, decimals=2, sign='all', verbose=True,
 confidence=None, high_Z='pos', limit_N=None,
 MAD=False, MSE=False, chi_square=False, KS=False,
 show_plot=True, save_plot=None, save_plot_kwargs=None,
 inform=None):
 """Performs the Benford Second Digits test on the series of
 numbers provided.

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. 'pos': only the positive
 entries; 'neg': only negative entries; 'all': all entries but zeros.
 Defaults to 'all'.
 verbose (bool): tells the number of registries that are being subjected to
 the analysis and returns tha analysis DataFrame sorted by the
 highest Z score down. Defaults to True.
 MAD (bool): calculates the Mean Absolute Difference between the
 found and the expected distributions; defaults to False.
 confidence (int, float): confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show. Defaults to None.
 high_Z (int): chooses which Z scores to be used when displaying results,
 according to the confidence level chosen. Defaluts to 'pos',
 which will highlight only values higher than the expexted
 frequencies; 'all' will highlight both extremes (positive and
 negative); and an integer, which will use the first n entries,
 positive and negative, regardless of whether Z is higher than
 the confidence or not.
 limit_N (int): sets a limit to N as the sample size for the calculation of
 the Z scores if the sample is too big. Defaults to None.
 MSE (bool): calculates the Mean Square Error of the sample; defaults to
 False.
 chi_square: calculates the chi_square statistic of the sample and
 compares it with a critical value, according to the confidence
 level chosen and the series's degrees of freedom. Defaults to
 False. Requires confidence != None.
 KS: calculates the Kolmogorov-Smirnov test, comparing the cumulative
 distribution of the sample with the Benford's, according to the
 confidence level chosen. Defaults to False. Requires confidence
 != None.
 show_plot (bool): draws the test plot.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.

 Returns:
 DataFrame with the Expected and Found proportions, and the Z scores of
 the differences if the confidence is not None.
 """
 verbose = _deprecate_inform_(verbose, inform)

 if not isinstance(data, Source):
 data = Source(data, sign=sign, decimals=decimals, verbose=verbose)

 data = data.second_digit(confidence=confidence, high_Z=high_Z,
 limit_N=limit_N, MAD=MAD, MSE=MSE,
 chi_square=chi_square, KS=KS, show_plot=show_plot,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs,
 ret_df=True)
 if confidence is not None:
 data = data[['Counts', 'Found', 'Expected', 'Z_score']]
 return data.sort_values('Z_score', ascending=False)
 else:
 return data[['Counts', 'Found', 'Expected']]

[docs]def last_two_digits(data, decimals=2, sign='all', verbose=True,
 confidence=None, high_Z='pos', limit_N=None,
 MAD=False, MSE=False, chi_square=False, KS=False,
 show_plot=True, save_plot=None, save_plot_kwargs=None,
 inform=None):
 """Performs the Last Two Digits test on the series of
 numbers provided.

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column,with values being
 integers or floats.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. 'pos': only the positive
 entries; 'neg': only negative entries; 'all': all entries but zeros.
 Defaults to 'all'.
 verbose (bool): tells the number of registries that are being subjected to
 the analysis and returns tha analysis DataFrame sorted by the
 highest Z score down. Defaults to True.
 confidence (int, float): confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show. Defaults to None.
 high_Z (int): chooses which Z scores to be used when displaying results,
 according to the confidence level chosen. Defaluts to 'pos',
 which will highlight only values higher than the expexted
 frequencies; 'all' will highlight both extremes (positive and
 negative); and an integer, which will use the first n entries,
 positive and negative, regardless of whether Z is higher than
 the confidence or not.
 limit_N (int): sets a limit to N as the sample size for the calculation of
 the Z scores if the sample is too big. Defaults to None.
 MAD (bool): calculates the Mean Absolute Difference between the
 found and the expected distributions; defaults to False.
 MSE (bool): calculates the Mean Square Error of the sample; defaults to
 False.
 chi_square: calculates the chi_square statistic of the sample and
 compares it with a critical value, according to the confidence
 level chosen and the series's degrees of freedom. Defaults to
 False. Requires confidence != None.
 KS: calculates the Kolmogorov-Smirnov test, comparing the cumulative
 distribution of the sample with the Benford's, according to the
 confidence level chosen. Defaults to False. Requires confidence
 != None.
 show_plot (bool): draws the test plot.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.

 Returns:
 DataFrame with the Expected and Found proportions, and the Z scores of
 the differences if the confidence is not None.
 """
 verbose = _deprecate_inform_(verbose, inform)

 if not isinstance(data, Source):
 data = Source(data, decimals=decimals, sign=sign, verbose=verbose)

 data = data.last_two_digits(confidence=confidence, high_Z=high_Z,
 limit_N=limit_N, MAD=MAD,
 MSE=MSE, chi_square=chi_square, KS=KS,
 show_plot=show_plot, save_plot=save_plot,
 save_plot_kwargs=save_plot_kwargs, ret_df=True)

 if confidence is not None:
 data = data[['Counts', 'Found', 'Expected', 'Z_score']]
 return data.sort_values('Z_score', ascending=False)
 else:
 return data[['Counts', 'Found', 'Expected']]

[docs]def mantissas(data, report=True, show_plot=True, arc_test=True,
 save_plot=None, save_plot_kwargs=None, inform=None):
 """Extraxts the mantissas of the records logarithms

 Args:
 data: sequence to compute mantissas from, numpy 1D array, pandas Series
 of pandas DataFrame column.
 report: prints the mamtissas mean, variance, skewness and kurtosis
 for the sequence studied, along with reference values.
 show_plot: plots the ordered mantissas and a line with the expected
 inclination. Defaults to True.
 arc_test: draws the Arc Test plot. Defaluts to True.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.

 Returns:
 Series with the data mantissas.
 """
 report = _deprecate_inform_(report, inform)

 mant = Mantissas(data)
 if report:
 mant.report(save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)
 if show_plot:
 mant.show_plot(save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)
 if arc_test:
 mant.arc_test(save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)
 return mant

[docs]def summation(data, digs=2, decimals=2, sign='all', top=20, verbose=True,
 show_plot=True, save_plot=None, save_plot_kwargs=None, inform=None):
 """Performs the Summation test. In a Benford series, the sums of the
 entries begining with the same digits tends to be the same.
 Works only with the First Digits (1, 2 or 3) test.

 Args:
 digs: tells the first digits to use: 1- first; 2- first two;
 3- first three. Defaults to 2.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 top: choses how many top values to show. Defaults to 20.
 show_plot: plots the results. Defaults to True.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.

 Returns:
 DataFrame with the Summation test, whether sorted in descending order
 (if verbose == True) or not.
 """
 verbose = _deprecate_inform_(verbose, inform)

 if not isinstance(data, Source):
 data = Source(data, sign=sign, decimals=decimals, verbose=verbose)

 data = data.summation(digs=digs, top=top,
 show_plot=show_plot, save_plot=save_plot,
 save_plot_kwargs=save_plot_kwargs, ret_df=True)
 if verbose:
 return data.sort_values('AbsDif', ascending=False)
 else:
 return data

[docs]def mad(data, test, decimals=2, sign='all', verbose=False):
 """Calculates the Mean Absolute Deviation of the Series

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 test: informs which base test to use for the mad.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. pos: only the positive
 entries; neg: only negative entries; all: all entries but zeros.
 Defaults to all.

 Returns:
 float: the Mean Absolute Deviation of the Series
 """
 data = _check_num_array_(data)
 test = _check_test_(test)
 start = Source(data, sign=sign, decimals=decimals, verbose=verbose)
 if test in [1, 2, 3]:
 start.first_digits(digs=test, MAD=True, MSE=True, simple=True)
 elif test == 22:
 start.second_digit(MAD=True, MSE=False, simple=True)
 else:
 start.last_two_digits(MAD=True, MSE=False, simple=True)
 return start.MAD

[docs]def mse(data, test, decimals=2, sign='all', verbose=False):
 """Calculates the Mean Squared Error of the Series

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 test: informs which base test to use for the mad.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. pos: only the positive
 entries; neg: only negative entries; all: all entries but zeros.
 Defaults to all.

 Returns:
 float: the Mean Squared Error of the Series
 """
 data = _check_num_array_(data)
 test = _check_test_(test)
 start = Source(data, sign=sign, decimals=decimals, verbose=verbose)
 if test in [1, 2, 3]:
 start.first_digits(digs=test, MAD=False, MSE=True, simple=True)
 elif test == 22:
 start.second_digit(MAD=False, MSE=True, simple=True)
 else:
 start.last_two_digits(MAD=False, MSE=True, simple=True)
 return start.MSE

[docs]def bhattacharyya_distance(data, test, decimals, sign="all", verbose=False):
 """Computes the Bhattacharyya Distance between the Found and the Expected
 (Benford) digits distributions, according toe the test chosen
 (First, Second, First Two...)

 Args:
 data (ndarray, Series): sequence to be evaluated, with values being
 integers or floats.
 test (int, str): informs which base test to be used.
 decimals (int): number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign (str, optional): tells which portion of the data to consider.
 pos: only the positive entries; neg: only negative entries; all:
 all entries but zeros. Defaults to "all".

 Returns:
 float: the Bhattacharyya Distance between the distributions
 """
 data = _check_num_array_(data)
 test = _check_test_(test)
 start = Source(data, sign=sign, decimals=decimals, verbose=verbose)
 if test in [1, 2, 3]:
 start.first_digits(digs=test, MAD=False, bhat_dist=True, simple=True)
 elif test == 22:
 start.second_digit(MAD=False, bhat_dist=True, simple=True)
 else:
 start.last_two_digits(MAD=False, bhat_dist=True, simple=True)
 return start.bhat_dist

[docs]def kullback_leibler_divergence(data, test, decimals, sign="all",
 verbose=False):
 """Computes the Kulback-Leibler Divergence between the Found and the
 Expected (Benford) digits distributions, according toe the test chosen
 (First, Second, First Two...).

 Args:
 data (ndarray, Series): sequence to be evaluated, with values being
 integers or floats.
 test (int, str): informs which base test to be used.
 decimals (int): number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign (str, optional): tells which portion of the data to consider.
 pos: only the positive entries; neg: only negative entries; all:
 all entries but zeros. Defaults to "all".

 Returns:
 float: the Kulback-Leibler Divergence between the distributions
 """
 data = _check_num_array_(data)
 test = _check_test_(test)
 start = Source(data, sign=sign, decimals=decimals, verbose=verbose)
 if test in [1, 2, 3]:
 start.first_digits(digs=test, MAD=False, kl_diverg=True, simple=True)
 elif test == 22:
 start.second_digit(MAD=False, kl_diverg=True, simple=True)
 else:
 start.last_two_digits(MAD=False, kl_diverg=True, simple=True)
 return start.kl_diverg

[docs]def mad_summ(data, test, decimals=2, sign='all', verbose=False):
 """Calculate the Mean Absolute Deviation of the Summation Test

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 test: informs which base test to use for the summation mad.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. pos: only the positive
 entries; neg: only negative entries; all: all entries but zeros.
 Defaults to all.

 Returns:
 float: the Mean Absolute Deviation of the Summation Test
 """
 data = _check_num_array_(data)
 test = _check_digs_(test)

 start = Source(data, sign=sign, decimals=decimals, verbose=verbose)
 temp = start.loc[start.ZN >= 10 ** (test - 1)]
 temp[DIGS[test]] = (temp.ZN // 10 ** ((log10(temp.ZN).astype(
 int)) - (test - 1))).astype(
 int)
 li = 1. / (9 * (10 ** (test - 1)))

 df = temp.groupby(DIGS[test]).sum()
 return mean(abs(df.ZN / df.ZN.sum() - li))

[docs]def rolling_mad(data, test, window, decimals=2, sign='all',
 show_plot=False, save_plot=None, save_plot_kwargs=None):
 """Applies the MAD to sequential subsets of the records.

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 test: tells which test to use. 1: Fisrt Digits; 2: First Two Digits;
 3: First Three Digits; 22: Second Digit; and -2: Last Two Digits.
 window: size of the subset to be used.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. pos: only the positive
 entries; neg: only negative entries; all: all entries but zeros.
 Defaults to all.
 show_plot (bool): draws the test plot.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.

 Returns:
 Series with sequentially computed MADs.
 """
 data = _check_num_array_(data)
 r_mad = Roll_mad(data, test, window, decimals, sign)
 if show_plot:
 r_mad.show_plot(save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)
 return r_mad.roll_series

[docs]def rolling_mse(data, test, window, decimals=2, sign='all',
 show_plot=False, save_plot=None, save_plot_kwargs=None):
 """Applies the MSE to sequential subsets of the records.

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 test: tells which test to use. 1: Fisrt Digits; 2: First Two Digits;
 3: First Three Digits; 22: Second Digit; and -2: Last Two Digits.
 window: size of the subset to be used.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. pos: only the positive
 entries; neg: only negative entries; all: all entries but zeros.
 Defaults to all.
 show_plot (bool): draws the test plot.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.

 Returns:
 Series with sequentially computed MSEs.
 """
 data = _check_num_array_(data)
 r_mse = Roll_mse(data, test, window, decimals, sign)
 if show_plot:
 r_mse.show_plot(save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)
 return r_mse.roll_series

[docs]def duplicates(data, top_Rep=20, verbose=True, inform=None):
 """Performs a duplicates test and maps the duplicates count in descending
 order.

 Args:
 data: sequence to take the duplicates from. pandas Series or
 numpy Ndarray.
 verbose (bool): tells how many duplicated entries were found and prints the
 top numbers according to the top_Rep argument. Defaluts to True.
 top_Rep: chooses how many duplicated entries will be
 shown withe the top repititions. int or None. Defaluts to 20.
 If None, returns al the ordered repetitions.

 Returns:
 DataFrame with the duplicated records and their respective counts

 Raises:
 ValueError: if the `top_Rep` arg is not int or None.
 """
 verbose = _deprecate_inform_(verbose, inform)

 if top_Rep is not None and not isinstance(top_Rep, int):
 raise ValueError('The top_Rep argument must be an int or None.')

 if not isinstance(data, Series):
 try:
 data = Series(data)
 except ValueError:
 print('\ndata must be a numpy Ndarray or a pandas Series.')

 dup = data.loc[data.duplicated(keep=False)]
 dup_count = dup.value_counts()

 dup_count.index.names = ['Entries']
 dup_count.name = 'Count'

 if verbose:
 print(f'\nFound {len(dup_count)} duplicated entries.\n'
 f'The entries with the {top_Rep} highest repitition counts are:')
 print(dup_count.head(top_Rep))

 return dup_count

[docs]def second_order(data, test, decimals=2, sign='all', verbose=True, MAD=False,
 confidence=None, high_Z='pos', limit_N=None, MSE=False,
 show_plot=True, save_plot=None, save_plot_kwargs=None, inform=None):
 """Performs the chosen test after subtracting the ordered sequence by itself.
 Hence Second Order.

 Args:
 data: sequence of numbers to be evaluated. Must be a numpy 1D array,
 a pandas Series or a pandas DataFrame column, with values being
 integers or floats.
 test: the test to be performed - 1 or 'F1D': First Digit; 2 or 'F2D':
 First Two Digits; 3 or 'F3D': First three Digits; 22 or 'SD':
 Second Digits; -2 or 'L2D': Last Two Digits.
 decimals: number of decimal places to consider. Defaluts to 2.
 If integers, set to 0. If set to -infer-, it will remove the zeros
 and consider up to the fifth decimal place to the right, but will
 loose performance.
 sign: tells which portion of the data to consider. pos: only the positive
 entries; neg: only negative entries; all: all entries but zeros.
 Defaults to all.
 verbose (bool): tells the number of registries that are being subjected to
 the analysis and returns tha analysis DataFrame sorted by the
 highest Z score down. Defaults to True.
 MAD (bool): calculates the Mean Absolute Difference between the
 found and the expected distributions; defaults to False.
 confidence (int, float): confidence level to draw lower and upper limits when
 plotting and to limit the top deviations to show. Defaults to None.
 high_Z (int): chooses which Z scores to be used when displaying results,
 according to the confidence level chosen. Defaluts to 'pos',
 which will highlight only values higher than the expexted
 frequencies; 'all' will highlight both extremes (positive and
 negative); and an integer, which will use the first n entries,
 positive and negative, regardless of whether Z is higher than
 the confidence or not.
 limit_N (int): sets a limit to N as the sample size for the calculation of
 the Z scores if the sample is too big. Defaults to None.
 MSE (bool): calculates the Mean Square Error of the sample; defaults to
 False.
 chi_square: calculates the chi_square statistic of the sample and
 compares it with a critical value, according to the confidence
 level chosen and the series's degrees of freedom. Defaults to
 False. Requires confidence != None.
 KS: calculates the Kolmogorov-Smirnov test, comparing the cumulative
 distribution of the sample with the Benford's, according to the
 confidence level chosen. Defaults to False. Requires confidence
 != None.
 show_plot (bool): draws the test plot.
 save_plot (str): string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs (dict): any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.

 Returns:
 DataFrame of the test chosen, but applied on Second Order pre-
 processed data.
 """
 test = _check_test_(test)

 verbose = _deprecate_inform_(verbose, inform)

 data = Source(data, decimals=decimals, sign=sign,
 sec_order=True, verbose=verbose)
 if test in [1, 2, 3]:
 data.first_digits(digs=test, MAD=MAD,
 confidence=confidence, high_Z=high_Z,
 limit_N=limit_N, MSE=MSE, show_plot=show_plot,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)
 elif test == 22:
 data.second_digit(MAD=MAD, confidence=confidence, high_Z=high_Z,
 limit_N=limit_N, MSE=MSE, show_plot=show_plot,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)
 else:
 data.last_two_digits(MAD=MAD, confidence=confidence, high_Z=high_Z,
 limit_N=limit_N, MSE=MSE, show_plot=show_plot,
 save_plot=save_plot, save_plot_kwargs=save_plot_kwargs)
 return data

 Source code for benford.expected

from pandas import DataFrame
from numpy import array, arange, log10
from .checks import _check_digs_
from .viz import plot_expected

[docs]class First(DataFrame):
 """Holds the expected probabilities of the First, First Two, or
 First Three digits according to Benford's distribution.

 Args:
 digs: 1, 2 or 3 - tells which of the first digits to consider:
 1 for the First Digit, 2 for the First Two Digits and 3 for
 the First Three Digits.
 plot: option to plot a bar chart of the Expected proportions.
 Defaults to True.
 save_plot: string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs: dict with any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.
 """

 def __init__(self, digs, plot=True, save_plot=None, save_plot_kwargs=None):
 _check_digs_(digs)
 dig_name = f'First_{digs}_Dig'
 exp_array, dig_array = _gen_first_digits_(digs)

 DataFrame.__init__(self, {'Expected': exp_array}, index=dig_array)
 self.index.names = [dig_name]

 if plot:
 plot_expected(self, digs, save_plot=save_plot,
 save_plot_kwargs=save_plot_kwargs)

[docs]class Second(DataFrame):
 """Holds the expected probabilities of the Second Digits
 according to Benford's distribution.

 Args:
 plot: option to plot a bar chart of the Expected proportions.
 Defaults to True.
 save_plot: string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs: dict with any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.
 """
 def __init__(self, plot=True, save_plot=None, save_plot_kwargs=None):

 exp, sec_digs = _gen_second_digits_()

 DataFrame.__init__(self, {'Expected': exp, 'Sec_Dig': sec_digs})
 self.set_index("Sec_Dig", inplace=True)

 if plot:
 plot_expected(self, 22, save_plot=save_plot,
 save_plot_kwargs=save_plot_kwargs)

[docs]class LastTwo(DataFrame):
 """Holds the expected probabilities of the Last Two Digits
 according to Benford's distribution.

 Args:
 plot: option to plot a bar chart of the Expected proportions.
 Defaults to True.
 save_plot: string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension. Only available when
 plot=True.
 save_plot_kwargs: dict with any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 Only available when plot=True and save_plot is a string with the
 figure file path/name.
 """
 def __init__(self, num=False, plot=True, save_plot=None, save_plot_kwargs=None):
 exp, l2d = _gen_last_two_digits_(num=num)
 DataFrame.__init__(self, {'Expected': exp,
 'Last_2_Dig': l2d})
 self.set_index('Last_2_Dig', inplace=True)
 if plot:
 plot_expected(self, -2, save_plot=save_plot,
 save_plot_kwargs=save_plot_kwargs)

def _get_expected_digits_(digs):
 """Chooses the Exxpected class to be used in a test

 Args:
 digs: the int corresponding to the Expected class to be instantiated

 Returns:
 the Expected instance forthe propoer test to be performed
 """
 if digs in [1, 2, 3]:
 return First(digs, plot=False)
 elif digs == 22:
 return Second(plot=False)
 else:
 return LastTwo(num=True, plot=False)

def _gen_last_two_digits_(num=False):
 """Creates two arrays, one with the possible last two digits and one with
 thei respective probabilities

 Args:
 num: returns numeric (ints) values. Defaluts to False,
 which returns strings.

 Returns:
 exp (np.array): Array with the (constant) probabilities of occurrence of
 each pair of last two digits
 l2d (np.array): Array of ints or str, in any case representing all 100
 possible combinations of last two digits
 """
 exp = array([1 / 99.] * 100)
 l2d = arange(0, 100)
 if num:
 return exp, l2d
 l2d = l2d.astype(str)
 l2d[:10] = array(['00', '01', '02', '03', '04', '05',
 '06', '07', '08', '09'])
 return exp, l2d

def _gen_first_digits_(digs):
 """Creates two arrays, one with the possible digits combinations and the
 other with their respective expected probabilities according to Benford

 Args:
 digs (int): 1, 2 or 3, for generation of the first, first two, or first
 three digits

 Returns:
 (tuple of arrays): the expected probabilities array and the digits
 combination array.
 """
 dig_array = arange(10 ** (digs - 1), 10 ** digs)
 exp_prob = log10(1 + (1. / dig_array))
 return exp_prob, dig_array

def _gen_second_digits_():
 """Creates two arrays, one with he possible second digits combinations and
 the other with their respective expected probabilities according to Benford

 Returns:
 (tuple of arrays): the expected probabilities array and the second
 digits array.
 """
 exp_f2d, _ = _gen_first_digits_(2)
 sec_digs = range(10)
 sec_digs_in_f2d = array(list(range(10)) * 9)
 exp = array([exp_f2d[sec_digs_in_f2d == i].sum() for i in sec_digs])
 return exp, array(sec_digs)

 Source code for benford.stats

from numpy import abs as nabs, errstate, linspace, log, sqrt, where
from .constants import CRIT_CHI2, CRIT_KS, MAD_CONFORM, DIGS

[docs]def Z_score(frame, N):
 """Computes the Z statistics for the proportions studied

 Args:
 frame: DataFrame with the expected proportions and the already calculated
 Absolute Diferences between the found and expeccted proportions
 N: sample size

 Returns:
 Series of computed Z scores
 """
 return (frame.AbsDif - (1 / (2 * N))) / sqrt(
 (frame.Expected * (1. - frame.Expected)) / N)

[docs]def chi_sq(frame, ddf, confidence, verbose=True):
 """Comnputes the chi-square statistic of the found distributions and compares
 it with the critical chi-square of such a sample, according to the
 confidence level chosen and the degrees of freedom - len(sample) -1.

 Args:
 frame: DataFrame with Found, Expected and their difference columns.
 ddf: Degrees of freedom to consider.
 confidence: Confidence level to look up critical value.
 verbose: prints the chi-squre result and compares to the critical
 chi-square for the sample. Defaults to True.

 Returns:
 The computed Chi square statistic and the critical chi square
 (according) to the degrees of freedom and confidence level,
 for comparison. None if confidence is None
 """
 if confidence is None:
 print('\nChi-square test needs confidence other than None.')
 return
 else:
 exp_counts = frame.Counts.sum() * frame.Expected
 dif_counts = frame.Counts - exp_counts
 found_chi = (dif_counts ** 2 / exp_counts).sum()
 crit_chi = CRIT_CHI2[ddf][confidence]
 if verbose:
 print(f"\nThe Chi-square statistic is {found_chi:.4f}.\n"
 f"Critical Chi-square for this series: {crit_chi}.")
 return (found_chi, crit_chi)

[docs]def chi_sq_2(frame):
 """Computes the chi-square statistic of the found distributions

 Args:
 frame: DataFrame with Found, Expected and their difference columns.

 Returns:
 The computed Chi square statistic
 """
 exp_counts = frame.Counts.sum() * frame.Expected
 dif_counts = frame.Counts - exp_counts
 return (dif_counts ** 2 / exp_counts).sum()

[docs]def kolmogorov_smirnov(frame, confidence, N, verbose=True):
 """Computes the Kolmogorov-Smirnov test of the found distributions
 and compares it with the critical chi-square of such a sample,
 according to the confidence level chosen.

 Args:
 frame: DataFrame with Foud and Expected distributions.
 confidence: Confidence level to look up critical value.
 N: Sample size
 verbose: prints the KS result and the critical value for the sample.
 Defaults to True.

 Returns:
 The Suprem, which is the greatest absolute difference between the
 Found and the expected proportions, and the Kolmogorov-Smirnov
 critical value according to the confidence level, for ccomparison
 """
 if confidence is None:
 print('\nKolmogorov-Smirnov test needs confidence other than None.')
 return
 else:
 # sorting and calculating the cumulative distribution
 ks_frame = frame.sort_index()[['Found', 'Expected']].cumsum()
 # finding the supremum - the largest cumul dist difference
 suprem = ((ks_frame.Found - ks_frame.Expected).abs()).max()
 # calculating the crittical value according to confidence
 crit_KS = CRIT_KS[confidence] / sqrt(N)

 if verbose:
 print(f"\nThe Kolmogorov-Smirnov statistic is {suprem:.4f}.\n"
 f"Critical K-S for this series: {crit_KS:.4f}")
 return (suprem, crit_KS)

[docs]def kolmogorov_smirnov_2(frame):
 """Computes the Kolmogorov-Smirnov test of the found distributions

 Args:
 frame: DataFrame with Foud and Expected distributions.

 Returns:
 The Suprem, which is the greatest absolute difference between the
 Found end th expected proportions
 """
 # sorting and calculating the cumulative distribution
 ks_frame = frame.sort_index()[['Found', 'Expected']].cumsum()
 # finding the supremum - the largest cumul dist difference
 return ((ks_frame.Found - ks_frame.Expected).abs()).max()

def _two_dist_ks_(dist1, dist2, cummulative=True):
 """Computes the Kolmogorov-Smirnov statistic between two distributions,
 a found one (dist2) and an expected one (dist1).

 Args:
 dist1 (np.arrat): array with the expected distribution
 dist2 (np.array): array with the found distribution
 cummulative (bool): makes apply cummulutative sum to the
 distributions (empirical cdf).

 Returns:
 tuple(floats): the KS statistic
 """
 dist2.sort(); dist1.sort()
 if not cummulative:
 return nabs(dist2 - dist1).max()
 return nabs(dist2.cumsum() - dist1.cumsum()).max()

def _mantissas_ks_(mant_dist, confidence, sample_size):
 """Computes the Kolmogorov-Smirnof statistic for the Mantissas, also
 providing the KS critical value according the the sample size and
 confidence level provided

 Args:
 mant_dist (np.array): array with the mantissas distribution found
 confidence (float, int): level of confidence to compute the critical
 value

 Returns:
 tuple(floats): the KS statistic and the critical value
 """
 crit_ks = CRIT_KS[confidence] * sqrt(2 * sample_size / sample_size ** 2)\
 if confidence else None
 # non-cummulative, uniformly distributed
 expected = linspace(0, 1, len(mant_dist), endpoint=False)
 ks = _two_dist_ks_(expected, mant_dist, cummulative=False)
 return ks, crit_ks

[docs]def mad(frame, test, verbose=True):
 """Computes the Mean Absolute Deviation (MAD) between the found and the
 expected proportions.

 Args:
 frame: DataFrame with the Absolute Deviations already calculated.
 test: Test to compute the MAD from (F1D, SD, F2D...)
 verbose: prints the MAD result and compares to limit values of
 conformity. Defaults to True.

 Returns:
 The Mean of the Absolute Deviations between the found and expected
 proportions.
 """
 mad = frame.AbsDif.mean()

 if verbose:
 print(f"\nThe Mean Absolute Deviation is {mad}")

 if test != -2:
 print(f"For the {MAD_CONFORM[DIGS[test]]}:\n\
 - 0.0000 to {MAD_CONFORM[test][0]}: Close Conformity\n\
 - {MAD_CONFORM[test][0]} to {MAD_CONFORM[test][1]}: Acceptable Conformity\n\
 - {MAD_CONFORM[test][1]} to {MAD_CONFORM[test][2]}: Marginally Acceptable Conformity\n\
 - Above {MAD_CONFORM[test][2]}: Nonconformity")
 else:
 pass
 return mad

[docs]def mse(frame, verbose=True):
 """Computes the test's Mean Square Error

 Args:
 frame: DataFrame with the already computed Absolute Deviations between
 the found and expected proportions
 verbose: Prints the MSE. Defaults to True.

 Returns:
 Mean of the squared differences between the found and the expected proportions.
 """
 mse = (frame.AbsDif ** 2).mean()

 if verbose:
 print(f"\nMean Square Error = {mse}")

 return mse

def _bhattacharyya_coefficient(dist_1, dist_2):
 """Computes the Bhattacharyya Coeficient between two probability
 distributions, to be letar used to compute the Bhattacharyya Distance

 Args:
 dist_1 (np.array): The newly gathered distribution, to be compared
 with an older / established distribution.
 dist_2 (np.array): The older/ establhished distribution with which
 the new one will be compared.

 Returns:
 bhat_coef (float)
 """
 return sqrt(dist_1 * dist_2).sum()

def _bhattacharyya_distance_(dist_1, dist_2):
 """Computes the Bhattacharyya Dsitance between two probability
 distributions

 Args:
 dist_1 (np.array): The newly gathered distribution, to be compared
 with an older / established distribution.
 dist_2 (np.array): The older/ establhished distribution with which
 the new one will be compared.

 Returns:
 bhat_dist (float)
 """
 with errstate(divide='ignore'):
 bhat_dist = -log(_bhattacharyya_coefficient(dist_1, dist_2))
 return bhat_dist

def _kullback_leibler_divergence_(dist_1, dist_2):
 """Computes the Kullback-Leibler Divergence between two probability
 distributions.

 Args:
 dist_1 (np.array): The newly gathered distribution, to be compared
 with an older / established distribution.
 dist_2 (np.array): The older/ establhished distribution with which
 the new one will be compared.

 Returns:
 kulb_leib_diverg (float)
 """
 # ignore divide by zero warning in np.where
 with errstate(divide='ignore'):
 kl_d = (log((dist_1 / dist_2), where=(dist_1 != 0)) * dist_1).sum()
 return kl_d

 Source code for benford.viz

from numpy import array, arange, maximum, sqrt, ones
import matplotlib.pyplot as plt
from matplotlib.text import Annotation
from .constants import COLORS, MAD_CONFORM

[docs]def plot_expected(df, digs, save_plot=None, save_plot_kwargs=None):
 """Plots the Expected Benford Distributions

 Args:
 df: DataFrame with the Expected Proportions
 digs: Test's digit
 save_plot: string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs: dict with any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 """
 if digs in [1, 2, 3]:
 y_max = (df.Expected.max() + (10 ** -(digs) / 3)) * 100
 figsize = 2 * (digs ** 2 + 5), 1.5 * (digs ** 2 + 5)
 elif digs == 22:
 y_max = 13.
 figsize = 14, 10.5
 elif digs == -2:
 y_max = 1.1
 figsize = 15, 8
 fig, ax = plt.subplots(figsize=figsize)
 plt.title('Expected Benford Distributions', size='xx-large')
 plt.xlabel(df.index.name, size='x-large')
 plt.ylabel('Distribution (%)', size='x-large')
 ax.set_facecolor(COLORS['b'])
 ax.set_ylim(0, y_max)
 ax.bar(df.index, df.Expected * 100, color=COLORS['t'], align='center')
 ax.set_xticks(df.index)
 ax.set_xticklabels(df.index)

 if save_plot:
 if not save_plot_kwargs:
 save_plot_kwargs = {}
 plt.savefig(save_plot, **save_plot_kwargs)

 plt.show(block=False)

def _get_plot_args(digs):
 """Selects the correct arguments for the plotting functions, depending on the
 the test (digs) chosen.
 """
 if digs in [1, 2, 3]:
 text_x = False
 n, m = 10 ** (digs - 1), 10 ** (digs)
 x = arange(n, m)
 figsize = (2 * (digs ** 2 + 5), 1.5 * (digs ** 2 + 5))
 elif digs == 22:
 text_x = False
 x = arange(10)
 figsize = (14, 10)
 else:
 text_x = True
 x = arange(100)
 figsize = (15, 7)
 return x, figsize, text_x

[docs]def plot_digs(df, x, y_Exp, y_Found, N, figsize, conf_Z, text_x=False,
 save_plot=None, save_plot_kwargs=None):
 """Plots the digits tests results

 Args:
 df: DataFrame with the data to be plotted
 x: sequence to be used in the x axis
 y_Exp: sequence of the expected proportions to be used in the y axis
 (line)
 y_Found: sequence of the found proportions to be used in the y axis
 (bars)
 N: lenght of sequence, to be used when plotting the confidence levels
 figsize: tuple to state the size of the plot figure
 conf_Z: Confidence level
 save_pic: file path to save figure
 text_x: Forces to show all x ticks labels. Defaluts to True.
 save_plot: string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs: dict with any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

 """
 if len(x) > 10:
 rotation = 90
 else:
 rotation = 0
 fig, ax = plt.subplots(figsize=figsize)
 plt.title('Expected vs. Found Distributions', size='xx-large')
 plt.xlabel('Digits', size='x-large')
 plt.ylabel('Distribution (%)', size='x-large')
 if conf_Z is not None:
 sig = conf_Z * sqrt(y_Exp * (1 - y_Exp) / N)
 upper = y_Exp + sig + (1 / (2 * N))
 lower_zeros = array([0]*len(upper))
 lower = maximum(y_Exp - sig - (1 / (2 * N)), lower_zeros)
 u = (y_Found < lower) | (y_Found > upper)
 c = array([COLORS['m']] * len(u))
 c[u] = COLORS['af']
 lower *= 100.
 upper *= 100.
 ax.plot(x, upper, color=COLORS['s'], zorder=5)
 ax.plot(x, lower, color=COLORS['s'], zorder=5)
 ax.fill_between(x, upper, lower, color=COLORS['s'],
 alpha=.3, label='Conf')
 else:
 c = COLORS['m']
 ax.bar(x, y_Found * 100., color=c, label='Found', zorder=3, align='center')
 ax.plot(x, y_Exp * 100., color=COLORS['s'], linewidth=2.5,
 label='Benford', zorder=4)
 ax.set_xticks(x)
 ax.set_xticklabels(x, rotation=rotation)
 ax.set_facecolor(COLORS['b'])
 if text_x:
 ind = array(df.index).astype(str)
 ind[:10] = array(['00', '01', '02', '03', '04', '05',
 '06', '07', '08', '09'])
 plt.xticks(x, ind, rotation='vertical')
 ax.legend()
 ax.set_ylim(0, max([y_Exp.max() * 100, y_Found.max() * 100]) + 10 / len(x))
 ax.set_xlim(x[0] - 1, x[-1] + 1)

 if save_plot:
 if not save_plot_kwargs:
 save_plot_kwargs = {}
 plt.savefig(save_plot, **save_plot_kwargs)

 plt.show(block=False)

[docs]def plot_sum(df, figsize, li, text_x=False, save_plot=None, save_plot_kwargs=None):
 """Plots the summation test results

 Args:
 df: DataFrame with the data to be plotted
 figsize: sets the dimensions of the plot figure
 li: value with which to draw the horizontal line
 save_plot: string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs: dict with any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 """
 x = df.index
 rotation = 90 if len(x) > 10 else 0
 fig = plt.figure(figsize=figsize)
 ax = fig.add_subplot(111)
 plt.title('Expected vs. Found Sums')
 plt.xlabel('Digits')
 plt.ylabel('Sums')
 ax.bar(x, df.Percent, color=COLORS['m'],
 label='Found Sums', zorder=3, align='center')
 ax.set_xlim(x[0] - 1, x[-1] + 1)
 ax.axhline(li, color=COLORS['s'], linewidth=2, label='Expected', zorder=4)
 ax.set_xticks(x)
 ax.set_xticklabels(x, rotation=rotation)
 ax.set_facecolor(COLORS['b'])
 if text_x:
 ind = array(x).astype(str)
 ind[:10] = array(['00', '01', '02', '03', '04', '05',
 '06', '07', '08', '09'])
 plt.xticks(x, ind, rotation='vertical')
 ax.legend()

 if save_plot:
 if not save_plot_kwargs:
 save_plot_kwargs = {}
 plt.savefig(save_plot, **save_plot_kwargs)

 plt.show(block=False)

[docs]def plot_ordered_mantissas(col, figsize=(12, 12),
 save_plot=None, save_plot_kwargs=None):
 """Plots the ordered mantissas and compares them to the expected, straight
 line that should be formed in a Benford-cmpliant set.

 Args:
 col (Series): column of mantissas to plot.
 figsize (tuple): sets the dimensions of the plot figure.
 save_plot: string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs: dict with any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html

 """
 ld = len(col)
 x = arange(1, ld + 1)
 n = ones(ld) / ld
 fig = plt.figure(figsize=figsize)
 ax = fig.add_subplot(111)
 ax.plot(x, col.sort_values(), linestyle='--',
 color=COLORS['s'], linewidth=3, label='Mantissas')
 ax.plot(x, n.cumsum(), color=COLORS['m'],
 linewidth=2, label='Expected')
 plt.ylim((0, 1.))
 plt.xlim((1, ld + 1))
 ax.set_facecolor(COLORS['b'])
 ax.set_title("Ordered Mantissas")
 plt.legend(loc='upper left')

 if save_plot:
 if not save_plot_kwargs:
 save_plot_kwargs = {}
 plt.savefig(save_plot, **save_plot_kwargs)

 plt.show(block=False);

[docs]def plot_mantissa_arc_test(df, gravity_center, grid=True, figsize=12,
 save_plot=None, save_plot_kwargs=None):
 """Draws thee Mantissa Arc Test after computing X and Y circular coordinates
 for every mantissa and the center of gravity for the set

 Args:
 df (DataFrame): pandas DataFrame with the mantissas and the X and Y
 coordinates.
 gravity_center (tuple): coordinates for plottling the gravity center
 grid (bool): show grid. Defaults to True.
 figsize (int): figure dimensions. No need to be a tuple, since the
 figure is a square.
 save_plot: string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs: dict with any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 """
 fig = plt.figure(figsize=(figsize, figsize))
 ax = plt.subplot()
 ax.set_facecolor(COLORS['b'])
 ax.scatter(df.mant_x, df.mant_y, label="ARC TEST",
 color=COLORS['m'])
 ax.scatter(gravity_center[0], gravity_center[1],
 color=COLORS['s'])
 text_annotation = Annotation(
 " Gravity Center: "
 f"x({round(gravity_center[0], 3)}),"
 f" y({round(gravity_center[1], 3)})",
 xy=(gravity_center[0] - 0.65,
 gravity_center[1] - 0.1),
 xycoords='data')
 ax.add_artist(text_annotation)
 ax.grid(True, which='both')
 ax.axhline(y=0, color='k')
 ax.axvline(x=0, color='k')
 ax.legend(loc='lower left')
 ax.set_title("Mantissas Arc Test")

 if save_plot:
 if not save_plot_kwargs:
 save_plot_kwargs = {}
 plt.savefig(save_plot, **save_plot_kwargs)

 plt.show(block=False);

[docs]def plot_roll_mse(roll_series, figsize, save_plot=None, save_plot_kwargs=None):
 """Shows the rolling MSE plot

 Args:
 roll_series: pd.Series resultant form rolling mse.
 figsize: the figure dimensions.
 save_plot: string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs: dict with any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 """
 fig, ax = plt.subplots(figsize=figsize)
 ax.set_facecolor(COLORS['b'])
 ax.plot(roll_series, color=COLORS['m'])

 if save_plot:
 if not save_plot_kwargs:
 save_plot_kwargs = {}
 plt.savefig(save_plot, **save_plot_kwargs)

 plt.show(block=False)

[docs]def plot_roll_mad(roll_mad, figsize, save_plot=None, save_plot_kwargs=None):
 """Shows the rolling MAD plot

 Args:
 roll_mad: pd.Series resultant form rolling mad.
 figsize: the figure dimensions.
 save_plot: string with the path/name of the file in which the generated
 plot will be saved. Uses matplotlib.pyplot.savefig(). File format
 is infered by the file name extension.
 save_plot_kwargs: dict with any of the kwargs accepted by
 matplotlib.pyplot.savefig()
 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.savefig.html
 """
 fig, ax = plt.subplots(figsize=figsize)
 ax.set_facecolor(COLORS['b'])
 ax.plot(roll_mad.roll_series, color=COLORS['m'])

 if roll_mad.test != -2:
 plt.axhline(y=MAD_CONFORM[roll_mad.test][0], color=COLORS['af'], linewidth=3)
 plt.axhline(y=MAD_CONFORM[roll_mad.test][1], color=COLORS['h2'], linewidth=3)
 plt.axhline(y=MAD_CONFORM[roll_mad.test][2], color=COLORS['s'], linewidth=3)

 if save_plot:
 if not save_plot_kwargs:
 save_plot_kwargs = {}
 plt.savefig(save_plot, **save_plot_kwargs)

 plt.show(block=False)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to benford_py’s documentation!

 		
 benford

 		
 benford package

 		
 benford.benford module

 		
 benford.expected module

 		
 benford.stats module

 		
 benford.viz module

_static/up.png

_static/up-pressed.png

